A
|
|
analysis |
Fukagai, Nobuyoshi |
anisotropic superconductivity |
Kawasaki, Yu |
asymptotic analysis |
Ohyama, Yousuke |
B |
C
|
|
Cathode and anode materials for Li ion rechargeable batteries |
Nakamura, Koichi |
conductor |
|
≫ ionic conductor |
|
≫ superionic conductor |
Nakamura, Koichi |
D
|
|
differential equation |
Fukagai, Nobuyoshi |
diffusion |
|
≫ ionic diffusion |
Nakamura, Koichi |
Discrete equations |
Ohyama, Yousuke |
E
|
|
Electrical conductivity measurement |
Nakamura, Koichi |
FG |
H
|
|
heavy-fermion compound |
Kawasaki, Yu |
I
|
|
ion |
|
≫ ionic conductor |
|
≫ superionic conductor |
Nakamura, Koichi |
≫ ionic diffusion |
Nakamura, Koichi |
ionic conductor |
|
≫ superionic conductor |
Nakamura, Koichi |
ionic diffusion |
Nakamura, Koichi |
Iwasawa theory for algebraic number fields |
Sumida-Takahashi, Hiroki |
JK |
L
|
|
Li transition metal oxide |
Nakamura, Koichi |
Li+ ion conductor |
Nakamura, Koichi |
Li+ ion diffusion |
Nakamura, Koichi |
M
|
|
Mechanical milling |
Nakamura, Koichi |
N
|
|
Na+ ion conductor |
Nakamura, Koichi |
Na+ ion diffusion |
Nakamura, Koichi |
non-Fermi liquid |
Kawasaki, Yu |
nonlinear |
Fukagai, Nobuyoshi |
nuclear magnetic resonance |
Kawasaki, Yu / Nakamura, Koichi |
numerical analysis of algebraic fields |
Sumida-Takahashi, Hiroki |
O |
P
|
|
The Painleve equations |
Ohyama, Yousuke |
QR |
S
|
|
simulation |
Takeuchi, Toshiki |
superionic conductor |
Nakamura, Koichi |
T |
U
|
|
Ultrasonic method |
Nakamura, Koichi |
VWXYZ |