Search:
Tokushima University > Graduate School of Science and Technology > Science and Technology > Mathematical Science > Mathematical Methods in Sciences >
Tokushima University > Faculty of Science and Technology > Department of Science and Technology > Mathematical and Natural Sciences > Mathematical Methods in Sciences >
Tokushima University > Faculty of Engineering > Center for Mathematics and Physics in Engineering Education > Fundamentals of Engineering >
Tokushima University > Graduate School of Advanced Technology and Science > Intelligent Structures and Mechanics Systems Engineering > Civil and Environmental Engineering > Planning and Design Systems Engineering for Infrastructures >
Tokushima University > Graduate School of Technology, Industrial and Social Sciences > 理工学域 > 数理科学系 > 数理解析分野 >

Research Activity

Field of Study

Theory of Differential Equations

Subject of Study

非線形楕円型方程式の定性的研究 (differential equation, analysis, nonlinear)

Book / Paper

Academic Paper (Judged Full Paper):

1.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term,
Proceedings of the Royal Society of Edinburgh Section A Mathematics, Vol.139, pp.73--106, 2009.
(DOI: 10.1017/S0308210507000765,   Thomson Reuters: Web of Science™)
2.Nobuyoshi Fukagai and Kimiaki Narukawa :
On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems,
Annali di Matematica Pura ed Applicata, Vol.186, No.3, pp.539--564, 2007.
(DOI: 10.1007/s10231-006-0018-x,   CiNii: 120004631181)
3.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on Rn.,
Funkcialaj Ekvacioj, Vol.49, No.2, pp.235--267, 2006.
(DOI: 10.1619/fesi.49.235,   Thomson Reuters: Web of Science™)
4.Nobuyoshi Fukagai and Kimiaki Narukawa :
Multiple positive solutions of nonlinear eigenvalue problems associated to a class of p-Laplacian like operators,
Communications in Contemporary Mathematics, Vol.5, No.5, pp.737--759, 2003.
5.Nobuyoshi Fukagai and Kimiaki Narukawa :
Bifurcation phenomena associated to a class of p-Laplacian like operators,
Manuscripta Mathematica, Vol.109, No.2, pp.175--201, 2002.
(DOI: 10.1007/s00229-002-0298-4,   CiNii: 120004166088,   Thomson Reuters: Web of Science™)
6.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Limit as p → ∞ of p-Laplace eigenvalue problems and L-inequarity of the Poincaré type,
Differential and Integral Equations, Vol.12, No.2, pp.183--206, 1999.
7.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Limit as p→∞ of p-Laplace eigenvalue problems and L-inequality of the Poincaré type,
Differential and Integral Equations, Vol.12, No.2, pp.183--206, 1999.
8.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
A bifurcation problem of some nonlinear degenerate elliptic equations,
Advances in Differential Equations, Vol.2, No.6, pp.895--926, 1997.
9.Nobuyoshi Fukagai and Kimiaki Narukawa :
On a model equation of one-dimensional elasticity.,
Advances in Mathematical Sciences and Applications, Vol.6, No.1, pp.31--65, 1996.
10.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Bifurcation of radially symmetric solutions of degenerate quasilinear elliptic equations,
Differential and Integral Equations, Vol.8, No.7, pp.1709--1732, 1995.
11.Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa :
Bifurcation of radially symmetric solutions of degenerate quasilinear elliptic equations,
Differential and Integral Equations, Vol.8, No.7, pp.1709--1732, 1995.
12.Nobuyoshi Fukagai and Kimiaki Narukawa :
Nonlinear eigenvalue problem for a model equation of an elastic surface.,
Hiroshima Mathematical Journal, Vol.25, No.1, pp.19--41, 1995.
13.Nobuyoshi Fukagai :
Nonnegative entire solutions of a class of degenerate semilinear elliptic equations,
Hiroshima Mathematical Journal, Vol.20, pp.385--394, 1990.
14.Nobuyoshi Fukagai and Kiyoshi Yoshida :
An existence theorem for positive solutions of degenerate semilinear elliptic equations,
Funkcialaj Ekvacioj, Vol.32, pp.357--364, 1989.
15.Nobuyoshi Fukagai :
Positive entire solutions of higher order semilinear elliptic equations,
Hiroshima Mathematical Journal, Vol.17, pp.561--590, 1987.
16.Nobuyoshi Fukagai, Takasi Kusano and Kiyoshi Yoshida :
Some remarks on the supersolution-subsolution method for superlinear elliptic equations,
Journal of Mathematical Analysis and Applications, Vol.123, pp.131--141, 1987.
17.Nobuyoshi Fukagai :
Positive entire solutions of semilinear elliptic equations,
Mathematische Annalen, Vol.274, pp.75--93, 1986.
18.Nobuyoshi Fukagai :
Existence and uniqueness of entire solutions of second order sublinear elliptic equations,
Funkcialaj Ekvacioj, Vol.29, pp.131--141, 1986.
19.Nobuyoshi Fukagai :
On decaying entire solutions of second order sublinear elliptic equations,
Hiroshima Mathematical Journal, Vol.14, pp.551--562, 1985.
20.Nobuyoshi Fukagai and Takasi Kusano :
Oscillation theory of first order functional-differential equations with deviating arguments,
Annali di Matematica Pura ed Applicata, Vol.136, pp.95--117, 1984.
21.Nobuyoshi Fukagai and Takasi Kusano :
On second order functional-differential equations and inequalities with deviating arguments,
Monatshefte für Mathematik, Vol.96, pp.107--118, 1983.

Academic Paper (Unrefereed Paper):

1.Nobuyoshi Fukagai, Masayuki Ito and Narukawa Kimiaki :
Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations,
RIMS Kokyuroku, Vol.1405, pp.14--30, 2004.
(CiNii: 110001018925)