Search:
Tokushima UniversityGraduate School of Technology, Industrial and Social SciencesDivision of Science and TechnologyMathematical ScienceMathematics and Computer Sciences (Files for researchmap) [PDF manual] [Auto-propagate to researchmap]

Research

Personal Web Page

Field of Study

Mathematics

Subject of Study

geometric analysis, differential geometry (geometric flows, heat equation, minimal submanifolds)

Book / Paper

Academic Paper (Judged Full Paper):

1. Keita Kunikawa and Yohei Sakurai :
Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition,
Proceedings of the American Mathematical Society, Vol.150, No.4, 1767-1777, 2022.
(DOI: 10.1090/proc/15768)
2. Keita Kunikawa and Sakurai Yohei :
Liouville theorem for harmonic map heat flow along ancient super Ricci flow via reduced geometry,
Calculus of Variations and Partial Differential Equations, Vol.60, No.5, 199, 2021.
(DOI: 10.1007/s00526-021-02079-2,   CiNii: 1360857593647552640)
3. Keita Kunikawa and Yohei Sakurai :
Liouville theorem for heat equation along ancient super Ricci flow via reduced Geometry,
Journal of Geometric Analysis, Vol.31, 11899-11930, 2021.
(DOI: 10.1007/s12220-021-00705-1)
4. Keita Kunikawa :
On Ecker's local integral quantity at infinity for ancient mean curvature flows,
Annals of Global Analysis and Geometry, Vol.58, 253-266, 2020.
(DOI: 10.1007/s10455-020-09724-7)
5. Keita Kunikawa and Ryosuke Takahashi :
Convergence of mean curvature flow in hyper-Kähler manifolds,
Pacific Journal of Mathematics, Vol.305, No.2, 667-691, 2020.
(DOI: 10.2140/pjm.2020.305.667)
6. Keita Kunikawa and Kajigaya Toru :
A convergence of generalized Lagrangian mean curvature flow in Kähler manifold of positive weighted Ricci form,
Advanced Studies in Pure Mathematics, Vol.85, 205-214, 2020.
7. Keita Kunikawa and Shunsuke Saito :
Remarks on topology of stable translating solutions,
Geometriae Dedicata, Vol.202, No.1, 1-8, 2018.
(DOI: 10.1007/s10711-018-0399-1)
8. Keita Kunikawa :
Non-existence of eternal solutions to Lagrangian mean curvature flow with non-negative Ricci curvature,
Geometriae Dedicata, Vol.201, No.1, 369-377, 2018.
(DOI: 10.1007/s10711-018-0397-3)
9. Keita Kunikawa and Toru Kajigaya :
Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow,
Journal of Geometry and Physics, Vol.128, 140-168, 2018.
(DOI: 10.1016/j.geomphys.2018.02.011)
10. Keita Kunikawa :
Translating solitons in arbitrary codimension,
Asian Journal of Mathematics, Vol.21, No.5, 855-872, 2018.
(DOI: 10.4310/AJM.2017.v21.n5.a4)
11. Keita Kunikawa :
A Bernstein type theorem of ancient solutions to the mean curvature flow,
Proceedings of the American Mathematical Society, Vol.144, No.3, 1325-1333, 2015.
12. Keita Kunikawa :
Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle,
Calculus of Variations and Partial Differential Equations, Vol.54, No.2, 1331-1344, 2015.

Review, Commentary:

1. Keita Kunikawa :
平均曲率流方程式,
数理科学, Vol.62, No.2, 30-37, Feb. 2024.
(CiNii: 1520017611545664256)

Et cetera, Workshop:

1. Keita Kunikawa :
Self-shrinkerのモース指数評価と今後の課題,
RIMS共同研究(公開型) 部分多様体と離散化の幾何学, Jun. 2024.
2. Keita Kunikawa :
余次元の高いself-shrinkerのモース指数評価,
福岡大学微分幾何セミナー, Apr. 2024.
3. Keita Kunikawa :
Index estimate for self-shrinkers in higher codimension,
MATRIX-RIMS Tandem Workshop: Evolutionary Partial Differential Equations and Applications, Mar. 2024.
4. Keita Kunikawa :
Index estimate for self-shrinkers in higher codimension,
The 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry, Feb. 2024.
5. Keita Kunikawa :
Morse index and first Betti number for self-shrinkers in higher codimension,
部分多様体幾何とリー群作用2023, Nov. 2023.
6. Keita Kunikawa :
Morse index estimate via first Betti number for self-shrinkers in higher codimension,
The 8th China-Japan Geometry Conference, Sep. 2023.
7. Keita Kunikawa :
余次元の高いself-shrinkerのベッチ数によるMorse index評価,
-, Jul. 2023.
8. Keita Kunikawa :
Liouville type theorem for harmonic maps of controlled growth,
NCTS Seminar on Differential Geometry, Jun. 2023.
9. Keita Kunikawa :
Liouville type theorem for harmonic maps of controlled growth,
BIMSA-BIT Differential Geometry Seminar, May 2023.