Search:
Tokushima UniversityGraduate School of Technology, Industrial and Social SciencesDivision of Science and TechnologyMathematical ScienceMathematics and Computer Sciences
Tokushima UniversityFaculty of Science and TechnologyDepartment of Science and TechnologyMathematical ScienceMathematics and Computer Sciences
Tokushima UniversityGraduate School of Sciences and Technology for InnovationScience and TechnologyMathematical SciencesMathematics and Computer Sciences
(Files for researchmap) [PDF manual] [Auto-propagate to researchmap]

Research

Personal Web Page

Field of Study

Mathematics

Subject of Study

geometric analysis, differential geometry (geometric flows, heat equation, minimal submanifolds)

Book / Paper

Academic Paper (Judged Full Paper):

1. Keita Kunikawa and Sakurai Yohei :
Gaussian heat kernel estimates of Bamler-Zhang type along super Ricci flow,
Communications on Pure and Applied Analysis, 24, 7, 1156-1178, 2025.
(DOI: 10.3934/cpaa.2025030,   Elsevier: Scopus)
2. Keita Kunikawa and Yohei Sakurai :
Hamilton type entropy formula along the Ricci flow on surfaces with boundary,
Communications in Analysis and Geometry, 31, 7, 1655-1668, 2024.
(Tokushima University Institutional Repository: 2013155,   DOI: 10.4310/CAG.2023.v31.n7.a2,   Elsevier: Scopus)
3. Keita Kunikawa and Yohei Sakurai :
Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition,
Proceedings of the American Mathematical Society, 150, 4, 1767-1777, 2022.
(Tokushima University Institutional Repository: 2013156,   DOI: 10.1090/proc/15768)
4. Keita Kunikawa and Sakurai Yohei :
Liouville theorem for harmonic map heat flow along ancient super Ricci flow via reduced geometry,
Calculus of Variations and Partial Differential Equations, 60, 5, 199, 2021.
(Tokushima University Institutional Repository: 2013159,   DOI: 10.1007/s00526-021-02079-2,   CiNii: 1050022708917384960)
5. Keita Kunikawa and Yohei Sakurai :
Liouville theorem for heat equation along ancient super Ricci flow via reduced Geometry,
Journal of Geometric Analysis, 31, 11899-11930, 2021.
(Tokushima University Institutional Repository: 2013161,   DOI: 10.1007/s12220-021-00705-1)
6. Keita Kunikawa :
On Ecker's local integral quantity at infinity for ancient mean curvature flows,
Annals of Global Analysis and Geometry, 58, 253-266, 2020.
(Tokushima University Institutional Repository: 2013162,   DOI: 10.1007/s10455-020-09724-7)
7. Keita Kunikawa and Ryosuke Takahashi :
Convergence of mean curvature flow in hyper-Kähler manifolds,
Pacific Journal of Mathematics, 305, 2, 667-691, 2020.
(Tokushima University Institutional Repository: 2013163,   DOI: 10.2140/pjm.2020.305.667)
8. Keita Kunikawa and Toru Kajigaya :
A convergence of generalized Lagrangian mean curvature flow in Kähler manifold with positive weighted Ricci form,
Advanced Studies in Pure Mathematics, 85, 205-214, 2020.
(Tokushima University Institutional Repository: 2013160,   DOI: 10.2969/aspm/08510205,   Elsevier: Scopus)
9. Keita Kunikawa and Shunsuke Saito :
Remarks on topology of stable translating solutions,
Geometriae Dedicata, 202, 1, 1-8, 2018.
(Tokushima University Institutional Repository: 2013158,   DOI: 10.1007/s10711-018-0399-1)
10. Keita Kunikawa :
Non-existence of eternal solutions to Lagrangian mean curvature flow with non-negative Ricci curvature,
Geometriae Dedicata, 201, 1, 369-377, 2018.
(Tokushima University Institutional Repository: 2013157,   DOI: 10.1007/s10711-018-0397-3)
11. Keita Kunikawa and Toru Kajigaya :
Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow,
Journal of Geometry and Physics, 128, 140-168, 2018.
(Tokushima University Institutional Repository: 2013164,   DOI: 10.1016/j.geomphys.2018.02.011)
12. Keita Kunikawa :
Translating solitons in arbitrary codimension,
Asian Journal of Mathematics, 21, 5, 855-872, 2018.
(Tokushima University Institutional Repository: 2013165,   DOI: 10.4310/AJM.2017.v21.n5.a4)
13. Keita Kunikawa :
A Bernstein type theorem of ancient solutions to the mean curvature flow,
Proceedings of the American Mathematical Society, 144, 3, 1325-1333, 2015.
(Tokushima University Institutional Repository: 2013166,   DOI: 10.1090/proc/12802,   Elsevier: Scopus)
14. Keita Kunikawa :
Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle,
Calculus of Variations and Partial Differential Equations, 54, 2, 1331-1344, 2015.
(Tokushima University Institutional Repository: 2013167,   DOI: 10.1007/s00526-015-0826-1,   Elsevier: Scopus)

Academic Paper (Unrefereed Paper):

1. Keita Kunikawa :
Index estimate by first Betti number of minimal hypersurface in compact symmetric space: Part I,
OCAMI Reports, 7, 193-206, 2025.
(Tokushima University Institutional Repository: 2013154)

Review, Commentary:

1. Keita Kunikawa :
平均曲率流方程式,
数理科学, 62, 2, 30-37, Feb. 2024.
(CiNii: 1520017611545664256)

Et cetera, Workshop:

1. Keita Kunikawa and Kajigaya Toru :
コンパクト対称空間内の極小超曲面の第1ベッチ数によるモース指数評価,
日本数学会2025年度年会, Mar. 2025.
2. Keita Kunikawa :
コンパクト対称空間内の極小超曲面の第1 ベッチ数によるモース指数評価,
リーマン幾何と幾何解析, Feb. 2025.
3. Keita Kunikawa :
Index estimate by first Betti number of minimal hypersurface in compact symmetric space: Part I,
Submanifold Geometry, Lie Group Action and Its Applications to Theoretical Physics 2024, Nov. 2024.
4. Keita Kunikawa :
余次元の高いself-shrinkerのモース指数評価,
第71回幾何学シンポジウム, Sep. 2024.
5. Keita Kunikawa :
Self-shrinkerのモース指数評価と今後の課題,
RIMS共同研究(公開型) 部分多様体と離散化の幾何学, Jun. 2024.
6. Keita Kunikawa :
余次元の高いself-shrinkerのモース指数評価,
福岡大学微分幾何セミナー, Apr. 2024.
7. Keita Kunikawa :
Index estimate for self-shrinkers in higher codimension,
MATRIX-RIMS Tandem Workshop: Evolutionary Partial Differential Equations and Applications, Mar. 2024.
8. Keita Kunikawa :
Index estimate for self-shrinkers in higher codimension,
The 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry, Feb. 2024.
9. Keita Kunikawa :
Morse index and first Betti number for self-shrinkers in higher codimension,
部分多様体幾何とリー群作用2023, Nov. 2023.
10. Keita Kunikawa :
Morse index estimate via first Betti number for self-shrinkers in higher codimension,
The 8th China-Japan Geometry Conference, Sep. 2023.
11. Keita Kunikawa :
余次元の高いself-shrinkerのベッチ数によるMorse index評価,
-, Jul. 2023.
12. Keita Kunikawa :
Liouville type theorem for harmonic maps of controlled growth,
NCTS Seminar on Differential Geometry, Jun. 2023.
13. Keita Kunikawa :
Liouville type theorem for harmonic maps of controlled growth,
BIMSA-BIT Differential Geometry Seminar, May 2023.

Grants-in-Aid for Scientific Research (KAKEN Grants Database @ NII.ac.jp)

  • Geometric analysis on evolving Riemannian manifolds (Project/Area Number: 23K03105 )
  • Mathematical approaches for analysing and diagnosing respiratory diseases (Project/Area Number: 23K22406 )
  • Research on type II singularities of the mean curvature flow (Project/Area Number: 19K14521 )
  • Search by Researcher Number (10813165)