Search: |
Professor Emeritus : Ito, Masayuki |
○ | Theory of Partial Differential Equations |
○ | Study of Nonlinear Phenomena by Asymptotic Analysis (partial differential equations, nonlinear, asymptotic analysis, singular perturbation) (I have studied various non-linear partial differential equasions arising in modeling of nonlinear phenomena by using asymptotic analysis. Main purpose of the study is to know how the nonlinearity affects the complexity of the structure of solutions for the equations.) |
1. | 広中 平祐 and Masayuki Ito : 数理科学事典, Osaka Shoseki co.,ltd., Osaka, Mar. 1991. |
1. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term, Proceedings of the Royal Society of Edinburgh Section A Mathematics, Vol.139, 73-106, 2009. (DOI: 10.1017/S0308210507000765) |
|
2. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on Rn., Funkcialaj Ekvacioj, Vol.49, No.2, 235-267, 2006. (DOI: 10.1619/fesi.49.235) |
|
3. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Limit as p → ∞ of p-Laplace eigenvalue problems and L∞-inequarity of the Poincaré type, Differential and Integral Equations, Vol.12, No.2, 183-206, 1999. |
|
4. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Limit as p→∞ of p-Laplace eigenvalue problems and L∞-inequality of the Poincaré type, Differential and Integral Equations, Vol.12, No.2, 183-206, 1999. |
|
5. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : A bifurcation problem of some nonlinear degenerate elliptic equations, Advances in Differential Equations, Vol.2, No.6, 895-926, 1997. |
|
6. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Bifurcation of radially symmetric solutions of degenerate quasilinear elliptic equations, Differential and Integral Equations, Vol.8, No.7, 1709-1732, 1995. |
|
7. | Nobuyoshi Fukagai, Masayuki Ito and Kimiaki Narukawa : Bifurcation of radially symmetric solutions of degenerate quasilinear elliptic equations, Differential and Integral Equations, Vol.8, No.7, 1709-1732, 1995. |
|
8. | Masayuki Ito : Travelling train solutions of FizHugh-Nagumo systems, Lecture Notos in Num. Appl. Anal., Vol.9, 75-104, 1987. |
|
9. | Masayuki Ito : 特異摂動論における漸近展開法, 数学, Vol.38, No.2, 150-164, 1986. |
|
10. | Masayuki Ito : Coexistence-equilibria for competition-diffusion systems with a small diffusion rate, Japan Journal of Applied Mathematics, Vol.1, No.2, 299-336, 1984. (DOI: 10.1007/BF03167062, Elsevier: Scopus) |
|
11. | Masayuki Ito : Global aspect of steady-states for competitive-diffusive systems with homogeneous Dirichlet conditions, Physica D: Nonlinear Phenomena, Vol.14D, No.1, 1-28, 1984. (DOI: 10.1016/0167-2789(84)90002-2) |
1. | Nobuyoshi Fukagai, Masayuki Ito and Narukawa Kimiaki : Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations, RIMS Kokyuroku, Vol.1405, 14-30, 2004. (CiNii: 1050001202060895232) |
|
2. | Masayuki Ito : A remark on singular perturbation method, Hiroshima Mathematical Journal, Vol.14, 619, 1985. |
|
3. | Masayuki Ito : On the conditional stability of non-minimal solutions of w"+exp(w)=O, Journal of the Faculty of Science, the University of Tokyo Sec. IA, Vol.28, No.1, 81-88, 1981. |
|
4. | Masayuki Ito : The conditional stability of stationary solutions for semilinear parabolic differential equations, Journal of the Faculty of Science, The Univesity of Tokyo Sec. IA Math., Vol.25, 263-275, 1979. |