検索:
徳島大学先端酵素学研究所基幹研究部門
徳島大学研究クラスター群研究クラスター群 (インキュベーション)2202003 1q増幅がもたらす腫瘍の進展・難治性病態の解明とその克服のための新規治療薬の創出
(researchmapへのインポート用ファイル) [PDF解説] [researchmapへの自動反映について]

研究活動

個人のホームページ

専門分野

細胞生物学 (Cell Biology), 生化学 (Biochemistry)

研究テーマ

細胞内シグナル伝達系のリン酸化プロテオーム解析, 核膜孔複合体の翻訳後修飾による核—細胞質間物質輸送などの細胞機能の制御

著書・論文

著書:

1. Wendell Lim(著), Bruce Mayer(著), Tony Pawson(著), 西田 栄介(監訳), 小迫 英尊 :
細胞のシグナル伝達, 第9章,
メディカル・サイエンス・インターナショナル, 東京, 2016年5月.
2. 小迫 英尊, 後藤 由季子 :
タンパク質のリン酸化,
朝倉書店, 2008年7月.
3. Kaori Matsuzawa, Hidetaka Kosako, Ichiro Azuma, Naoyuki Inagaki and Masaki Inagaki :
Possible regulation of intermediate filament proteins by Rho-binding kinases.,
Plenum Press, 1998.

学術論文(審査論文):

1. Kazuki Okuyama, Aneela Nomura, Kohei Nishino, Hirokazu Tanaka, Christelle Harly, Risa Chihara, Yasuyo Harada, Sawako Muroi, Masato Kubo, Hidetaka Kosako and Ichiro Taniuchi :
The Majority of the Serine/Threonine Phosphorylation Sites in Bcl11b Protein Are Dispensable for the Differentiation of T Cells.,
The Journal of Immunology, Vol.210, No.11, 1728-1739, 2023.
(DOI: 10.4049/jimmunol.2200101,   PubMed: 37074186)
2. Ryuto Tsuchiya, Yuki Yoshimatsu, Rei Noguchi, Yooksil Sin, Takuya Ono, Taro Akiyama, Hidetaka Kosako, Akihiko Yoshida, Seiji Ohtori, Akira Kawai and Tadashi Kondo :
Integrating analysis of proteome profile and drug screening identifies therapeutic potential of MET pathway for the treatment of malignant peripheral nerve sheath tumor.,
Expert Review of Proteomics, Vol.20, No.4-6, 109-119, 2023.
(DOI: 10.1080/14789450.2023.2218035,   PubMed: 37229542)
3. Shiori Akabane, Kiyona Watanabe, Hidetaka Kosako, Shun-Ichi Yamashita, Kohei Nishino, Masahiro Kato, Shiori Sekine, Tomotake Kanki, Noriyuki Matsuda, Toshiya Endo and Toshihiko Oka :
TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria.,
Cell Reports, Vol.42, No.5, 112454, 2023.
(徳島大学機関リポジトリ: 118892,   DOI: 10.1016/j.celrep.2023.112454,   PubMed: 37160114,   Elsevier: Scopus)
4. Ikuko Maejima, Taichi Hara, Satoshi Tsukamoto, Hiroyuki Koizumi, Takeshi Kawauchi, Tomoko Akuzawa, Rika Hirai, Hisae Kobayashi, Inoya Isobe, Kazuo Emoto, Hidetaka Kosako and Ken Sato :
RAB35 is required for murine hippocampal development and functions by regulating neuronal cell distribution.,
Communications Biology, Vol.6, No.1, 2023.
(徳島大学機関リポジトリ: 118902,   DOI: 10.1038/s42003-023-04826-x,   PubMed: 37085665)
5. M Ahmed Refaat, Mikiyo Nakata, Afzal Husain, Hidetaka Kosako, Tasuku Honjo and A Nasim Begum :
HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression.,
Cell Reports, Vol.42, No.3, 2023.
(徳島大学機関リポジトリ: 118575,   DOI: 10.1016/j.celrep.2023.112284,   PubMed: 36943867)
6. Yuma Horii, Shoichi Matsuda, Chikashi Toyota, Takumi Morinaga, Takeo Nakaya, Soken Tsuchiya, Masaki Ohmuraya, Takanori Hironaka, Ryo Yoshiki, Kotaro Kasai, Yuto Yamauchi, Noburo Takizawa, Akiomi Nagasaka, Akira Tanaka, Hidetaka Kosako and Michio Nakaya :
VGLL3 is a mechanosensitive protein that promotes cardiac fibrosis through liquid-liquid phase separation.,
Nature Communications, Vol.14, No.1, 2023.
(徳島大学機関リポジトリ: 118934,   DOI: 10.1038/s41467-023-36189-6,   PubMed: 36754961)
7. Kou Motani, Noriko Saito-Tarashima, Kohei Nishino, Shunya Yamauchi, Noriaki Minakawa and Hidetaka Kosako :
The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER,
Cell Reports, Vol.41, No.12, 111868, 2022.
(徳島大学機関リポジトリ: 118576,   DOI: 10.1016/j.celrep.2022.111868,   PubMed: 36543137)
8. Susumu Katsuma, Kanako Hirota, Noriko Matsuda-Imai, Takahiro Fukui, Tomohiro Muro, Kohei Nishino, Hidetaka Kosako, Keisuke Shoji, Hideki Takanashi, Takeshi Fujii, Shin-Ichi Arimura and Takashi Kiuchi :
A Wolbachia factor for male killing in lepidopteran insects.,
Nature Communications, Vol.13, No.1, 6764, 2022.
(DOI: 10.1038/s41467-022-34488-y,   PubMed: 36376299)
9. Kohei Nishino, Harunori Yoshikawa, Kou Motani and Hidetaka Kosako :
Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.,
Journal of Proteome Research, 2022.
(DOI: 10.1021/acs.jproteome.2c00130,   PubMed: 35979633)
10. Daisuke Oikawa, Min Gi, Hidetaka Kosako, Kouhei Shimizu, Hirotaka Takahashi, Masayuki Shiota, Shuhei Hosomi, Keidai Komakura, Hideki Wanibuchi, Daisuke Tsuruta, Tatsuya Sawasaki and Fuminori Tokunaga :
OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways.,
Cell Death & Disease, Vol.13, No.8, 694, 2022.
(徳島大学機関リポジトリ: 117807,   DOI: 10.1038/s41419-022-05145-5,   PubMed: 35941131)
11. Hiroya Yamazaki, Masatoshi Takagi, Hidetaka Kosako, Tatsuya Hirano and H Shige Yoshimura :
Cell cycle-specific phase separation regulated by protein charge blockiness.,
Nature Cell Biology, Vol.24, No.5, 625-632, 2022.
(徳島大学機関リポジトリ: 117570,   DOI: 10.1038/s41556-022-00903-1,   PubMed: 35513709)
12. Takumi Maruhashi, Daisuke Sugiura, Il-mi Okazaki, Kenji Shimizu, K Takeo Maeda, Jun Ikubo, Harunori Yoshikawa, Katsumi Maenaka, Naozumi Ishimaru, Hidetaka Kosako, Tatsuya Takemoto and Taku Okazaki :
Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity.,
Immunity, Vol.55, No.5, 912-924.e8, 2022.
(DOI: 10.1016/j.immuni.2022.03.013,   PubMed: 35413245)
13. Harunori Yoshikawa, Kohei Nishino and Hidetaka Kosako :
Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE.,
Journal of Proteomics, Vol.258, 2022.
(DOI: 10.1016/j.jprot.2022.104543,   PubMed: 35231659)
14. Ryouhei Shioya, Kohdai Yamada, Kohki Kido, Hirotaka Takahashi, Akira Nozawa, Hidetaka Kosako and Tatsuya Sawasaki :
A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID.,
Biochemical and Biophysical Research Communications, Vol.592, 54-59, 2022.
(DOI: 10.1016/j.bbrc.2021.12.109,   PubMed: 35030423)
15. Masato Miyake, Mitsuaki Sobajima, Kiyoe Kurahashi, Akira Shigenaga, Masaya Denda, Akira Otaka, Tomohide Saio, Naoki Sakane, Hidetaka Kosako and Seiichi Oyadomari :
Identification of an endoplasmic reticulum proteostasis modulator that enhances insulin production in pancreatic β cells.,
Cell Chemical Biology, Vol.29, No.6, 996-1009.e9, 2022.
(徳島大学機関リポジトリ: 116761,   DOI: 10.1016/j.chembiol.2022.01.002,   PubMed: 35143772)
16. Satoshi Yamanaka, Yuto Horiuchi, Saya Matsuoka, Kohki Kido, Kohei Nishino, Mayaka Maeno, Norio Shibata, Hidetaka Kosako and Tatsuya Sawasaki :
A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues.,
Nature Communications, Vol.13, No.1, 2022.
(徳島大学機関リポジトリ: 117144,   DOI: 10.1038/s41467-021-27818-z,   PubMed: 35013300)
17. Takaharu Sakuragi, Ryuta Kanai, Akihisa Tsutsumi, Hirotaka Narita, Eriko Onishi, Kohei Nishino, Takuya Miyazaki, Takeshi Baba, Hidetaka Kosako, Atsushi Nakagawa, Masahide Kikkawa, Chikashi Toyoshima and Shigekazu Nagata :
The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes.,
Nature Structural & Molecular Biology, Vol.28, No.10, 825-834, 2021.
(徳島大学機関リポジトリ: 116966,   DOI: 10.1038/s41594-021-00665-8,   PubMed: 34625749)
18. Katsumori Segawa, Atsuo Kikuchi, Tomoyasu Noji, Yuki Sugiura, Keita Hiraga, Chigure Suzuki, Kazuhiro Haginoya, Yasuko Kobayashi, Mitsuhiro Matsunaga, Yuki Ochiai, Kyoko Yamada, Takuo Nishimura, Shinya Iwasawa, Wataru Shoji, Fuminori Sugihara, Kohei Nishino, Hidetaka Kosako, Masahito Ikawa, Yasuo Uchiyama, Makoto Suematsu, Hiroshi Ishikita, Shigeo Kure and Shigekazu Nagata :
A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes.,
The Journal of Clinical Investigation, Vol.131, No.18, e148005, 2021.
(DOI: 10.1172/JCI148005,   PubMed: 34403372)
19. Akihito Morita, Yuhkoh Satouh, Hidetaka Kosako, Hisae Kobayashi, Akira Iwase and Ken Sato :
Clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins and preimplantation development.,
Development, Vol.148, No.14, dev199461, 2021.
(DOI: 10.1242/dev.199461,   PubMed: 34269385)
20. Ariel Pradipta, Miwa Sasai, Kou Motani, Su Ji Ma, Youngae Lee, Hidetaka Kosako and Masahiro Yamamoto :
killing program requires Irgm2 but not its microbe vacuolar localization.,
Life Science Alliance, Vol.4, No.7, e202000960, 2021.
(徳島大学機関リポジトリ: 116564,   DOI: 10.26508/lsa.202000960,   PubMed: 34078740)
21. Miwa Sasai, Su Ji Ma, Masaaki Okamoto, Kohei Nishino, Hikaru Nagaoka, Eizo Takashima, Ariel Pradipta, Youngae Lee, Hidetaka Kosako, Pann-Ghill Suh and Masahiro Yamamoto :
Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells.,
The Journal of Experimental Medicine, Vol.218, No.7, e20201763, 2021.
(DOI: 10.1084/jem.20201763,   PubMed: 33970189)
22. Masahiro Maruoka, Panpan Zhang, Hiromi Mori, Eiichi Imanishi, M Daniel Packwood, Hiroshi Harada, Hidetaka Kosako and Jun Suzuki :
Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane.,
Molecular Cell, Vol.81, No.7, 1397-1410.e9, 2021.
(DOI: 10.1016/j.molcel.2021.02.025,   PubMed: 33725486)
23. Yuka Takehara, Hideki Yashiroda, Yoshitaka Matsuo, Xian Zhao, Akane Kamigaki, Tetsuo Matsuzaki, Hidetaka Kosako, Toshifumi Inada and Shigeo Murata :
The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation.,
iScience, Vol.24, No.3, 102145, 2021.
(徳島大学機関リポジトリ: 116543,   DOI: 10.1016/j.isci.2021.102145,   PubMed: 33665564)
24. Waka Kojima, Koji Yamano, Hidetaka Kosako, Kenichiro Imai, Reika Kikuchi, Keiji Tanaka and Noriyuki Matsuda :
Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy.,
Autophagy, Vol.17, No.8, 2011-2036, 2021.
(徳島大学機関リポジトリ: 116483,   DOI: 10.1080/15548627.2021.1874133,   PubMed: 33499712)
25. Koichiro Yamashita, Shigehiko Tamura, Masanori Honsho, Hiroto Yada, Yuichi Yagita, Hidetaka Kosako and Yukio Fujiki :
Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery.,
The Journal of Cell Biology, Vol.219, No.10, e202001003, 2020.
(徳島大学機関リポジトリ: 115930,   DOI: 10.1083/jcb.202001003,   PubMed: 32854114,   Elsevier: Scopus)
26. Junji Chida, Hideyuki Hara, Keiji Uchiyama, Etsuhisa Takahashi, Hironori Miyata, Hidetaka Kosako, Yukiko Tomioka, Toshihiro Ito, Hiroyuki Horiuchi, Haruo Matsuda, Hiroshi Kido and Suehiro Sakaguchi :
Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice.,
PLoS Pathogens, Vol.16, No.8, e1008823, 2020.
(徳島大学機関リポジトリ: 115613,   DOI: 10.1371/journal.ppat.1008823,   PubMed: 32845931)
27. Kanji Okumoto, Mahmoud-El Shermely, Masanao Natsui, Hidetaka Kosako, Ryuichi Natsuyama, Toshihiro Marutani and Yukio Fujiki :
The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation,
eLife, Vol.9, No.e55896, 2020.
(徳島大学機関リポジトリ: 115898,   DOI: 10.7554/eLife.55896,   PubMed: 32831175)
28. Kou Motani and Hidetaka Kosako :
BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING).,
The Journal of Biological Chemistry, Vol.295, No.32, 11174-11183, 2020.
(徳島大学機関リポジトリ: 115929,   DOI: 10.1074/jbc.RA120.014323,   PubMed: 32554809)
29. Eiichi Hashimoto, Shota Okuno, Shoshiro Hirayama, Yoshiyuki Arata, Tsuyoshi Goto, Hidetaka Kosako, Jun Hamazaki and Shigeo Murata :
Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells.,
iScience, Vol.23, No.7, 101299, 2020.
(徳島大学機関リポジトリ: 115922,   DOI: 10.1016/j.isci.2020.101299,   PubMed: 32634741)
30. Kohki Kido, Satoshi Yamanaka, Shogo Nakano, Kou Motani, Souta Shinohara, Akira Nozawa, Hidetaka Kosako, Sohei Ito and Tatsuya Sawasaki :
AirID, a Novel Proximity Biotinylation Enzyme, for Analysis of Protein-Protein Interactions,
eLife, Vol.9, No.e54983, 2020.
(徳島大学機関リポジトリ: 115899,   DOI: 10.7554/eLife.54983,   PubMed: 32391793)
31. Takumi Koshiba and Hidetaka Kosako :
Mass spectrometry-based methods for analyzing the mitochondrial interactome in mammalian cells.,
The Journal of Biochemistry, Vol.167, No.3, 225-231, 2020.
(徳島大学機関リポジトリ: 115488,   DOI: 10.1093/jb/mvz090,   PubMed: 31647556)
32. Hiroyuki Kondo, Takafumi Matsumura, Mari Kaneko, Kenichi Inoue, Hidetaka Kosako, Masahito Ikawa, Yousuke Takahama and Izumi Ohigashi :
PITHD1 is a proteasome-interacting protein essential for male fertilization,
The Journal of Biological Chemistry, Vol.295, No.6, 1658-1672, 2020.
(徳島大学機関リポジトリ: 114611,   DOI: 10.1074/jbc.RA119.011144,   PubMed: 31915251)
33. Hiroya Yamazaki, Hidetaka Kosako and Shige H Yoshimura :
Quantitative proteomics indicate a strong correlation of mitotic phospho-/dephosphorylation with non-structured regions of substrates,
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol.1868, No.1, 140295, 2020.
(DOI: 10.1016/j.bbapap.2019.140295,   PubMed: 31676455)
34. Keisuke Kitakaze, Shusuke Taniuchi, Eri Kawano, Yoshimasa Hamada, Masato Miyake, Miho Oyadomari, Hirotatsu Kojima, Hidetaka Kosako, Tomoko Kuribara, Suguru Yoshida, Takamitsu Hosoya and Seiichi Oyadomari :
Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity.,
eLife, Vol.8, e43302, 2019.
(徳島大学機関リポジトリ: 115090,   DOI: 10.7554/eLife.43302,   PubMed: 31843052)
35. Fumika Koyano, Koji Yamano, Hidetaka Kosako, Yoko Kimura, Mayumi Kimura, Yukiko Fujiki, Keiji Tanaka and Noriyuki Matsuda :
Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes.,
EMBO Reports, Vol.20, No.12, e47728, 2019.
(徳島大学機関リポジトリ: 115092,   DOI: 10.15252/embr.201947728,   PubMed: 31602805)
36. Izumi Ohigashi, Yu Tanaka, Kenta Kondou, Sayumi Fujimori, Hiroyuki Kondo, Amy Palin, Victoria Hoffmann, Mina Kozai, Yosuke Matsushita, Shinsuke Uda, Ryo Motosugi, Jun Hamazaki, Hiroyuki Kubota, Shigeo Murata, Keiji Tanaka, Toyomasa Katagiri, Hidetaka Kosako and Yousuke Takahama :
Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells.,
Cell Reports, Vol.29, No.9, 2901-2916.e6, 2019.
(徳島大学機関リポジトリ: 115049,   DOI: 10.1016/j.celrep.2019.10.079,   PubMed: 31775054)
37. Takuya Yokoyama, Masaki Yukuhiro, Yuka Iwasaki, Chika Tanaka, Kazunari Sankoda, Risa Fujiwara, Atsushi Shibuta, Taishi Higashi, Keiichi Motoyama, Hidetoshi Arima, Kazumasa Yoshida, Nozomi Sugimoto, Hiroyuki Morimoto, Hidetaka Kosako, Takashi Ohshima and Masatoshi Fujita :
Identification of candidate molecular targets of the novel antineoplastic antimitotic NP-10,
Scientific Reports, Vol.9, No.1, 16825, 2019.
(徳島大学機関リポジトリ: 114952,   DOI: 10.1038/s41598-019-53259-2,   PubMed: 31727981)
38. Takahiro Yoshinaka, Hidetaka Kosako, Takuma Yoshizumi, Ryo Furukawa, Yu Hirano, Osamu Kuge, Taro Tamada and Takumi Koshiba :
Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a Role of the Coiled-Coil Region,
iScience, Vol.27, No.19, 1065-1078, 2019.
(徳島大学機関リポジトリ: 115351,   DOI: 10.1016/j.isci.2019.08.056,   PubMed: 31522117)
39. Fumika Koyano, Koji Yamano, Hidetaka Kosako, Keiji Tanaka and Noriyuki Matsuda :
Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL,
The Journal of Biological Chemistry, Vol.294, No.26, 10300-10314, 2019.
(徳島大学機関リポジトリ: 115489,   DOI: 10.1074/jbc.RA118.006302,   PubMed: 31110043)
40. Yuichi Takashi, Hidetaka Kosako, Shun Sawatsubashi, Yuka Kinoshita, Nobuaki Ito, Maria K. Tsoumpra, Masaomi Nangaku, Masahiro Abe, Munehide Matsuhisa, Shigeaki Kato, Toshio Matsumoto and Seiji Fukumoto :
Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation,
Proceedings of the National Academy of Sciences of the United States of America, Vol.116, No.23, 11418-11427, 2019.
(徳島大学機関リポジトリ: 113621,   DOI: 10.1073/pnas.1815166116,   PubMed: 31097591)
41. Takaharu Sakuragi, Hidetaka Kosako and Shigekazu Nagata :
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure,
Proceedings of the National Academy of Sciences of the United States of America, Vol.116, No.8, 2907-2912, 2019.
(DOI: 10.1073/pnas.1820499116,   PubMed: 30718401,   Elsevier: Scopus)
42. Kou Motani and Hidetaka Kosako :
Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE,
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol.1867, 57-61, 2019.
(DOI: 10.1016/j.bbapap.2018.06.002,   PubMed: 29883688)
43. Takeshi Terabayashi, Katsuhiro Hanada, Kou Motani, Hidetaka Kosako, Mami Yamaoka, Toshihide Kimura and Toshimasa Ishizaki :
Baicalein disturbs the morphological plasticity and motility of breast adenocarcinoma cells depending on the tumor microenvironment,
Genes to Cells, Vol.23, No.6, 466-479, 2018.
(DOI: 10.1111/gtc.12584,   PubMed: 29667279,   Elsevier: Scopus)
44. Kou Motani and Hidetaka Kosako :
Activation of stimulator of interferon genes (STING) induces ADAM17-mediated shedding of the immune semaphorin SEMA4D.,
The Journal of Biological Chemistry, Vol.293, No.20, 7717-7726, 2018.
(DOI: 10.1074/jbc.RA118.002175,   PubMed: 29618514,   Elsevier: Scopus)
45. Miyuki Sato, Katsuya Sato, Kotone Tomura, Hidetaka Kosako and Ken Sato :
The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans,
Nature Cell Biology, Vol.20, No.1, 81-91, 2018.
(DOI: 10.1038/s41556-017-0008-9,   PubMed: 29255173,   Elsevier: Scopus)
46. Hidetaka Kosako and Kou Motani :
Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE,
Methods in Molecular Biology, Vol.1487, 137-149, 2017.
(DOI: 10.1007/978-1-4939-6424-6_10,   Elsevier: Scopus)
47. Eri Ishikawa, Hidetaka Kosako, Tomoharu Yasuda, Masaki Ohmuraya, Kimi Araki, Tomohiro Kurosaki, Takashi Saito and Sho Yamasaki :
Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1.,
Nature Communications, Vol.7, 12756, 2016.
(徳島大学機関リポジトリ: 112446,   DOI: 10.1038/ncomms12756,   PubMed: 27670070)
48. Shiori Akabane, Midori Uno, Naoki Tani, Shunta Shimazaki, Natsumi Ebara, Hiroki Kato, Hidetaka Kosako and Toshihiko Oka :
PKA regulates PINK1 stability and Parkin recruitment to damaged mitochondria through phosphorylation of MIC60.,
Molecular Cell, Vol.62, No.3, 371-384, 2016.
(DOI: 10.1016/j.molcel.2016.03.037,   PubMed: 27153535,   Elsevier: Scopus)
49. Yuki Shindo, Kazunari Iwamoto, Kazunari Mouri, Kayo Hibino, Masaru Tomita, Hidetaka Kosako, Yasushi Sako and Koichi Takahashi :
Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling,
Nature Communications, Vol.7, 10485, 2016.
(徳島大学機関リポジトリ: 112432,   DOI: 10.1038/ncomms10485,   PubMed: 26786866,   Elsevier: Scopus)
50. Kei Okatsu, Fumika Koyano, Mayumi Kimura, Hidetaka Kosako, Yasushi Saeki, Keiji Tanaka and Noriyuki Matsuda :
Phosphorylated ubiquitin chain is the genuine Parkin receptor,
The Journal of Cell Biology, Vol.209, No.1, 111-128, 2015.
(DOI: 10.1083/jcb.201410050,   PubMed: 25847540,   Elsevier: Scopus)
51. Fumika Koyano, Kei Okatsu, Hidetaka Kosako, Yasushi Tamura, Etsu Go, Mayumi Kimura, Yoko Kimura, Hikaru Tsuchiya, Hidehito Yoshihara, Takatsugu Hirokawa, Toshiya Endo, Fon A. Edward, Trempe Jean-Francois, Saeki Yasushi, Keiji Tanaka and Noriyuki Matsuda :
Ubiquitin is phosphorylated by PINK1 to activate Parkin.,
Nature, Vol.510, No.7503, 162-166, 2014.
(DOI: 10.1038/nature13392,   PubMed: 24784582,   Elsevier: Scopus)
52. Haruko Tsurumi, Yutaka Harita, Hidetake Kurihara, Hidetaka Kosako, Kenji Hayashi, Atsuko Matsunaga, Yuko Kajiho, Shoichiro Kanda, Kenichiro Miura, Takashi Sekine, Akira Oka, Kiyonobu Ishizuka, Shigeru Horita, Motoshi Hattori, Seisuke Hattori and Takashi Igarashi :
Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells.,
Kidney International, Vol.86, No.3, 548-557, 2014.
(DOI: 10.1038/ki.2014.85,   PubMed: 24694988,   Elsevier: Scopus)
53. Masahiro Iguchi, Yuki Kujuro, Kei Okatsu, Fumika Koyano, Hidetaka Kosako, Mayumi Kimura, Norihiro Suzuki, Shinichiro Uchiyama, Keiji Tanaka and Noriyuki Matsuda :
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation.,
The Journal of Biological Chemistry, Vol.288, No.30, 22019-22032, 2013.
(DOI: 10.1074/jbc.M113.467530,   PubMed: 23754282,   Elsevier: Scopus)
54. Michio Nakaya, Mitsuru Tajima, Hidetaka Kosako, Takeo Nakaya, Akiko Hashimoto, Kenji Watari, Hiroaki Nishihara, Mina Ohba, Shiori Komiya, Naoki Tani, Motohiro Nishida, Hisaaki Taniguchi, Yoji Sato, Mitsuru Matsumoto, Makoto Tsuda, Masahiko Kuroda, Kazuhide Inoue and Hitoshi Kurose :
GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance.,
Nature Communications, Vol.4, No.1532, 2013.
(DOI: 10.1038/ncomms2540,   PubMed: 23443560,   Elsevier: Scopus)
55. Kei Okatsu, Toshihiko Oka, Masahiro Iguchi, Kenji Imamura, Hidetaka Kosako, Naoki Tani, Mayumi Kimura, Etsu Go, Fumika Koyano, Manabu Funayama, Kahori Shiba-Fukushima, Shigeto Sato, Hideaki Shimizu, Yuko Fukunaga, Hisaaki Taniguchi, Masaaki Komatsu, Nobutaka Hattori, Katsuyoshi Mihara, Keiji Tanaka and Noriyuki Matsuda :
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria.,
Nature Communications, Vol.3, No.1016, 2012.
(DOI: 10.1038/ncomms2016,   PubMed: 22910362,   Elsevier: Scopus)
56. Hidetaka Kosako and Kohji Nagano :
Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways,
Expert Review of Proteomics, Vol.8, No.1, 81-94, 2011.
(DOI: 10.1586/epr.10.104,   PubMed: 21329429)
57. Hidetaka Kosako and Naoko Imamoto :
Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors,
Nucleus, Vol.1, No.4, 309-313, 2010.
(DOI: 10.4161/nucl.1.4.11744,   PubMed: 21327077)
58. Hidetaka Kosako, Nozomi Yamaguchi, Chizuru Aranami, Masato Ushiyama, Shingo Kose, Naoko Imamoto, Hisaaki Taniguchi, Eisuke Nishida and Seisuke Hattori :
Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport,
Nature Structural & Molecular Biology, Vol.16, No.10, 1026-1035, 2009.
(DOI: 10.1038/nsmb.1656,   PubMed: 19767751)
59. Yutaka Harita, Hidetake Kurihara, Hidetaka Kosako, Tohru Tezuka, Takashi Sekine, Takashi Igarashi, Ikuroh Ohsawa, Shigeo Ohta and Seisuke Hattori :
Phosphorylation of Nephrin triggers Ca2+ signaling by recruitment and activation of phospholipase C-γ1,
The Journal of Biological Chemistry, Vol.284, No.13, 8951-8962, 2009.
(DOI: 10.1074/jbc.M806851200,   PubMed: 19179337)
60. Seisuke Hattori, Naoyuki Iida and Hidetaka Kosako :
Identification of protein kinase substrates by proteomic approaches.,
Expert Review of Proteomics, Vol.5, No.3, 497-505, 2008.
(DOI: 10.1586/14789450.5.3.497,   PubMed: 18532915)
61. Yutaka Harita, Hidetake Kurihara, Hidetaka Kosako, Tohru Tezuka, Takashi Sekine, Takashi Igarashi and Seisuke Hattori :
Neph1, a component of the kidney slit diaphragm, is tyrosine phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2.,
The Journal of Biological Chemistry, Vol.283, No.14, 9177-9186, 2008.
(DOI: 10.1074/jbc.M707247200,   PubMed: 18258597)
62. Mei-Ying Han, Hidetaka Kosako, Toshiki Watanabe and Seisuke Hattori :
Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN.,
Molecular and Cellular Biology, Vol.27, No.23, 8190-8204, 2007.
(DOI: 10.1128/MCB.00661-07,   PubMed: 17875928)
63. Michimoto Kobayashi, Takuya Katagiri, Hidetaka Kosako, Naoyuki Iida and Seisuke Hattori :
Global analysis of dynamic changes in lipid raft proteins during T-cell activation.,
Electrophoresis, Vol.28, No.12, 2035-2043, 2007.
(DOI: 10.1002/elps.200600675,   PubMed: 17486660,   Elsevier: Scopus)
64. Mitsuyo Machida, Hidetaka Kosako, Kyoko Shirakabe, Michimoto Kobayashi, Masato Ushiyama, Junichi Inagawa, Joe Hirano, Tomoyo Nakano, Yasuhiko Bando, Eisuke Nishida and Seisuke Hattori :
Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis.,
The FEBS Journal, Vol.274, No.6, 1576-1587, 2007.
(DOI: 10.1111/j.1742-4658.2007.05705.x,   PubMed: 17480206)
65. Koji Ueda, Hidetaka Kosako, Yasuhisa Fukui and Seisuke Hattori :
Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate.,
The Journal of Biological Chemistry, Vol.279, No.40, 41815-41821, 2004.
(DOI: 10.1074/jbc.M406049200,   PubMed: 15271996)
66. Shin-ichi Yamamoto, Motoshi Nagao, Michiya Sugimori, Hidetaka Kosako, Hirofumi Nakatomi, Naoya Yamamoto, Hirohide Takebayashi, Yo-ichi Nabeshima, Toshio Kitamura, Gerry Weinmaster, Kozo Nakamura and Masato Nakafuku :
Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord.,
The Journal of Neuroscience, Vol.21, No.24, 9814-9823, 2001.
(PubMed: 11739589,   Elsevier: Scopus)
67. Rumiko Mizuguchi, Michiya Sugimori, Hirohide Takebayashi, Hidetaka Kosako, Motoshi Nagao, Shosei Yoshida, Yo-ichi Nabeshima, Kenji Shimamura and Masato Nakafuku :
Combinatorial roles of Olig2 and Neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons.,
Neuron, Vol.31, No.5, 757-771, 2001.
(DOI: 10.1016/S0896-6273(01)00413-5,   PubMed: 11567615,   Elsevier: Scopus)
68. Hidetaka Kosako, Toshimichi Yoshida, Fumio Matsumura, Toshimasa Ishizaki, Shuh Narumiya and Masaki Inagaki :
Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow.,
Oncogene, Vol.19, No.52, 6059-6064, 2000.
(DOI: 10.1038/sj.onc.1203987,   PubMed: 11146558,   Elsevier: Scopus)
69. Hirohide Takebayashi, Shosei Yoshida, Michiya Sugimori, Hidetaka Kosako, Ryo Kominami, Masato Nakafuku and Yo-ichi Nabeshima :
Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3.,
Mechanisms of Development, Vol.99, No.1-2, 143-148, 2000.
(DOI: 10.1016/S0925-4773(00)00466-4,   PubMed: 11091082,   CiNii: 1361137044131632640,   Elsevier: Scopus)
70. Hidemasa Goto, Hidetaka Kosako and Masaki Inagaki :
Regulation of intermediate filament organization during cytokinesis: possible roles of Rho-associated kinase.,
Microscopy Research and Technique, Vol.49, No.2, 173-182, 2000.
(DOI: 10.1002/(SICI)1097-0029(20000415)49:2<173::AID-JEMT10>3.0.CO;2-A,   PubMed: 10816257,   Elsevier: Scopus)
71. Hidemasa Goto, Yasuko Tomono, Kozo Ajiro, Hidetaka Kosako, Masatosi Fujita, Minoru Sakurai, Katsuya Okawa, Akihiro Iwamatsu, Tohru Okigaki, Toshitada Takahashi and Masaki Inagaki :
Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation.,
The Journal of Biological Chemistry, Vol.274, No.36, 25543-25549, 1999.
(DOI: 10.1074/jbc.274.36.25543,   PubMed: 10464286,   CiNii: 1570009751806153216,   Elsevier: Scopus)
72. Ryota Hashimoto, Yu Nakamura, Hidetaka Kosako, Mutsuki Amano, Kozo Kaibuchi, Masaki Inagaki and Masatoshi Takeda :
Distribution of Rho-kinase in the bovine brain.,
Biochemical and Biophysical Research Communications, Vol.263, No.2, 575-579, 1999.
73. Hidetaka Kosako, Hidemasa Goto, Maki Yanagida, Kaori Matsuzawa, Masatoshi Fujita, Yasuko Tomono, Tohru Okigaki, Hideharu Odai, Kozo Kaibuchi and Masaki Inagaki :
Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments.,
Oncogene, Vol.18, No.17, 2783-2788, 1999.
74. Hidemasa Goto, Hidetaka Kosako, Kazushi Tanabe, Maki Yanagida, Minoru Sakurai, Mutsuki Amano, Kozo Kaibuchi and Masaki Inagaki :
Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis.,
The Journal of Biological Chemistry, Vol.273, No.19, 11728-11736, 1998.
75. Hidetaka Kosako, Mutsuki Amano, Maki Yanagida, Kazushi Tanabe, Yoshimi Nishi, Kozo Kaibuchi and Masaki Inagaki :
Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase.,
The Journal of Biological Chemistry, Vol.272, No.16, 10333-10336, 1997.
76. Kaori Matsuzawa, Hidetaka Kosako, Naoyuki Inagaki, Hideki Shibata, Hideyuki Mukai, Yoshitaka Ono, Mutsuki Amano, Kozo Kaibuchi, Yoshiharu Matsuura, Ichiro Azuma and Masaki Inagaki :
Domain-specific phosphorylation of vimentin and glial fibrillary acidic protein by PKN.,
Biochemical and Biophysical Research Communications, Vol.234, No.3, 621-625, 1997.
77. Hidetaka Kosako, Yukiko Gotoh and Eisuke Nishida :
Multiple roles of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase cascade in Xenopus laevis.,
Development Growth & Differentiation, Vol.38, 577-582, 1996.
78. Hidetaka Kosako, Yoshiko Akamatsu, Naoya Tsurushita, Lee Kyung-Kwon, Yukiko Gotoh and Eisuke Nishida :
Isolation and characterization of neutralizing single-chain antibodies against Xenopus mitogen-activated protein kinase kinase from phage display libraries.,
Biochemistry, Vol.35, No.40, 13212-13221, 1996.
79. Makoto Fukuda, Yukiko Gotoh, Hidetaka Kosako, Seisuke Hattori and Eisuke Nishida :
Analysis of the Ras p21/mitogen-activated protein kinase signaling in vitro and in Xenopus oocytes.,
The Journal of Biological Chemistry, Vol.269, No.52, 33097-33101, 1994.
80. Hidetaka Kosako, Yukiko Gotoh and Eisuke Nishida :
Mitogen-activated protein kinase kinase is required for the Mos-induced metaphase arrest.,
The Journal of Biological Chemistry, Vol.269, No.45, 28354-28358, 1994.
81. Yukiko Gotoh, Satoshi Matsuda, Katsuya Takenaka, Seisuke Hattori, Akihiro Iwamatsu, Masaharu Ishikawa, Hidetaka Kosako and Eisuke Nishida :
Characterization of recombinant Xenopus MAP kinase kinases mutated at potential phosphorylation sites.,
Oncogene, Vol.9, No.7, 1891-1898, 1994.
82. Hidetaka Kosako, Yukiko Gotoh and Eisuke Nishida :
Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation.,
The EMBO Journal, Vol.13, No.9, 2131-2138, 1994.
83. Hidetaka Kosako, Yukiko Gotoh and Eisuke Nishida :
Regulation and function of the MAP kinase cascade in Xenopus oocytes.,
Journal of Cell Science, Vol.18, 115-119, 1994.
84. Hidetaka Kosako, Eisuke Nishida and Yukiko Gotoh :
cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates.,
The EMBO Journal, Vol.12, No.2, 787-794, 1993.
85. Kazuyuki Tobe, Takashi Kadowaki, Kenta Hara, Yukiko Gotoh, Hidetaka Kosako, Satoshi Matsuda, Hiroyuki Tamemoto, Kohjiro Ueki, Yasuo Akanuma, Eisuke Nishida and Yoshio Yazaki :
Sequential activation of MAP kinase activator, MAP kinases, and S6 peptide kinase in intact rat liver following insulin injection.,
The Journal of Biological Chemistry, Vol.267, No.29, 21089-21097, 1992.
86. Hidetaka Kosako, Yukiko Gotoh, Satoshi Matsuda, Satoshi Matsuda and Eisuke Nishida :
Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation.,
The EMBO Journal, Vol.11, No.8, 2903-2908, 1992.
87. Satoshi Matsuda, Hidetaka Kosako, Katsuya Takenaka, Kenji Moriyama, Hikoichi Sakai, Tetsu Akiyama, Yukiko Gotoh and Eisuke Nishida :
Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade.,
The EMBO Journal, Vol.11, No.3, 973-982, 1992.
88. Yukiko Gotoh, Eisuke Nishida, Satoshi Matsuda, Nobuyuki Shiina, Hidetaka Kosako, Koichiro Shiokawa, Tetsu Akiyama, Kunihiro Ohta and Hikoichi Sakai :
In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase.,
Nature, Vol.349, No.6306, 251-254, 1991.
(DOI: 10.1038/349251a0,   PubMed: 1702878)

学術論文(紀要・その他):

1. Daishiroh Kobayashi, Masaya Denda, JUNYA Hayashi, Kohta Hidaka, Yutaka Kohmura, Takaaki Tsunematsu, Kohei Nishino, Harunori Yoshikawa, OHKAWACHI Kento, Kiyomi Nigorikawa, Tetsuro Yoshimaru, Naozumi Ishimaru, Nomura Wataru, Toyomasa Katagiri, Hidetaka Kosako and Akira Otaka :
Sulfoxide-mediated Cys-Trp-selective bioconjugation that enables protein labeling and peptide heterodimerization,
ChemRxiv, 2024.
(DOI: 10.26434/chemrxiv-2024-tkv7w-v2)

総説・解説:

1. 小迫 英尊 :
質量分析による近接依存性標識タンパク質の大規模同定,
実験医学, Vol.41, No.11, 1176-1779, 2023年7月.
2. 西野 耕平, 小迫 英尊 :
免疫沈降-質量分析によるタンパク質の翻訳後修飾および相互作用の解析,
日本プロテオーム学会誌, Vol.7, No.1, 9-14, 2022年8月.
3. 小迫 英尊, 茂谷 康 :
Phos-tagなどのリン酸化プロテオミクス技術による疾患原因キナーゼの機能解析,
電気泳動, Vol.61, No.2, 53-57, 2017年11月.
4. 新土 優樹, 小迫 英尊, 佐甲 靖志, 高橋 恒一 :
細胞内シグナルのアナログ・デジタル変換,
生物物理, Vol.56, No.6, 334-336, 2016年9月.
(DOI: 10.2142/biophys.56.334,   CiNii: 1390001206535352064)
5. 小迫 英尊 :
タンパク質キナーゼとユビキチンリガーゼの連携によるミトコンドリアの品質管理機構とパーキンソン病,
日本応用酵素協会誌, No.50, 11-19, 2016年3月.
6. 小迫 英尊 :
プロテオミクスで明らかになった核膜孔複合体の翻訳後修飾による機能制御,
生化学, Vol.87, No.1, 49-55, 2015年2月.
(PubMed: 26571555,   CiNii: 1520290883051086976)
7. 小迫 英尊 :
リン酸化プロテオミクスによるキナーゼ基質の大規模解析,
生化学, Vol.83, No.12, 1122-1127, 2011年12月.
(PubMed: 22352043,   CiNii: 1520853832072225536)
8. 小迫 英尊 :
リン酸化プロテオミクスで明らかとなったERKによる核膜孔複合体の機能制御,
実験医学, Vol.28, No.1, 69-73, 2010年.
9. 小迫 英尊, 牛山 正人, 服部 成介 :
2D DIGE技術を用いたリン酸化プロテオーム解析によるシグナル伝達経路構成因子の網羅的同定法,
実験医学, Vol.22, No.9, 1299-1304, 2004年.
10. 小迫 英尊 :
GST融合タンパク質からGSTを除去する方法,
実験医学, Vol.18, No.16, 2270-2271, 2000年.
11. 小迫 英尊 :
特異性の高いポリクローナル抗体の作製上のポイント,
実験医学, Vol.18, No.17, 2379-2380, 2000年.
12. 小迫 英尊, 後藤 英仁, 稲垣 昌樹 :
抗リン酸化ペプチド抗体の簡易作製法,
実験医学, Vol.16, No.6, 823-827, 1998年.
13. 小迫 英尊, 稲垣 昌樹 :
CFキナーゼ(分裂溝キナーゼ)と細胞質分裂,
実験医学, Vol.15, No.10, 1185-1190, 1997年.

国際会議:

1. Shunya Yamauchi, Noriko Saito-Tarashima, Kou Motani, Hidetaka Kosako and Noriaki Minakawa :
Synthesis of cyclic dinucleotide analog enhanced membrane permeability,
15h International Symposium on Nanomedicine (ISNM2022), Dec. 2022.
2. Hidetaka Kosako :
Advanced proteomic approaches to elucidate disease-related signaling mechanisms.,
The 5th Symposium of the Inter-University Research Network for Trans-Omics Medicine, Online,, Jan. 2021.
3. Kou Motani and Hidetaka Kosako :
BioID-based Screening Of Biotinylation Sites Using Tamavidin 2-REV Globally Identifies Interactors Of Stimulator Of Interferon Genes (STING),
ASCB | EMBO 2019 Meeting, Washington DC, USA,, Dec. 2019.
4. Izumi Ohigashi, Yu Tanaka, Kenta Kondou, Sayumi Fujimori, Amy C. Palin, Hiroyuki Kondo, Hidetaka Kosako and Yousuke Takahama :
Trans-omics impact of thymoproteasome in cortical thymic epithelial cells,
ThymE: T cell and thymus biology, May 2019.
5. Kou Motani and Hidetaka Kosako :
BioID-Based Screening of Biotinylation Sites Globally Identifies STING Interactors,
Keystone Symposia "Proteomics and its Application to Translational and Precision Medicine, Stockholm, Sweden,, Apr. 2019.
6. Yuichi Takashi, Yuka Kinoshita, Nobuaki Ito, Shun Sawatsubashi, Hidetaka Kosako, Masahiro Abe, Munehide Matsuhisa, Toshio Matsumoto and Seiji Fukumoto :
FGF receptor 1c works as a phosphate-sensor to regulate FGF23 production,
ASBMR 2018 Annual Meeting Registration Confirmation, Sep. 2018.
7. Kou Motani, Mayumi Kajimoto and Hidetaka Kosako :
Identification of the ATG8 family member GABARAPL2 as a novel TBK1 substrate,
12th International Symposium of the Institute Network, Nov. 2017.
8. Hidetaka Kosako, Megumi Kawano, Keiji Tanaka and Noriyuki Matsuda :
Quantitative interactome and phosphoproteome analysis identifies novel signaling components of Parkinson's disease-associated kinase PINK1.,
HUPO2017, Dublin, Ireland,, Sep. 2017.
9. Hidetaka Kosako, Eri Ishikawa and Sho Yamasaki :
Dissection of protein kinase D signaling during thymocyte development using various phosphoproteomic strategies.,
HUPO 2016, Taipei, Taiwan,, Sep. 2016.
10. Hidetaka Kosako :
Identification and Functional Analysis of Protein Kinase Substrates using Various Proteomic Technologies,
Keystone Symposia "The Biological Code of Cell Signaling: A Tribute to Tony Pawson", Colorado, USA, Jan. 2015.
11. Hidetaka Kosako, Naoki Tani, Shigehiro Yoshimura, Shingo Kose, Hisaaki Taniguchi and Naoko Imamoto :
Multisite phosphorylation of FG nucleoporins by MAP kinases is involved in the regulation of nucleocytoplasmic transport,
Cold Spring Harbor Laboratory Meeting "Dynamic Organization of Nuclear Function", Cold Spring Harbor, USA, Sep. 2012.
12. Hidetaka Kosako, Naoki Tani, Shigehiro Yoshimura, Shingo Kose, Megumi Kawano, Hisaaki Taniguchi and Naoko Imamoto :
Multisite phosphorylation of nucleoporins by ERK and p38 MAP kinases is implicated in the regulation of nuclear transport,
Gordon Research Conference "Phosphorylation & G-Protein Mediated Signaling Networks", Biddeford, USA, Jun. 2012.
13. Hidetaka Kosako, Naoki Tani, Shigehiro Yoshimura, Shingo Kose, Megumi Kawano, Hisaaki Taniguchi and Naoko Imamoto :
Phosphorylation of FG-repeat nucleoporins by MAP kinases is implicated in the control of nuclear transport,
EMBO Conference "Cellular Signaling & Molecular Medicine", Dubrovnik, Croatia, May 2012.
14. Hidetaka Kosako, Naoki Tani, Shigehiro Yoshimura, Shingo Kose, Megumi Kawano, Hisaaki Taniguchi and Naoko Imamoto :
Phosphorylation of FG nucleoporins by ERK and p38 MAP kinases is involved in the regulation of nucleocytoplasmic transport,
2011 American Society for Cell Biology Annual Meeting, Denver, USA, Dec. 2011.
15. Hidetaka Kosako, Shigehiro Yoshimura, Megumi Kawano, Shingo Kose and Naoko Imamoto :
Phosphorylation of multiple FG nucleoporins by MAP kinases is involved in the regulation of nucleocytoplasmic transport,
Keystone Symposia "Omics Meets Cell Biology", Alpbach, Austria, May 2011.
16. Hidetaka Kosako :
Phosphoproteomics reveals ERK MAP kinase-mediated regulation of nuclear pore complex proteins,
BIT's 3rd World Cancer Congress, Singapore, Jun. 2010.
17. Hidetaka Kosako, Chizuru Aranami, Nozomi Yamaguchi, Hitomi Suzuki, Shingo Kose, Naoko Imamoto, Hisaaki Taniguchi, Eisuke Nishida and Seisuke Hattori :
Phosphorylation of nuclear pore complex proteins by ERK MAP kinase regulates interaction with transport receptors,
49th Annual Meeting of American Society for Cell Biology, San Diego, USA, Dec. 2009.

国内講演発表:

1. 小迫 英尊 :
先端プロテオミクスの開発・導入による細胞内シグナル伝達制御機構の解明,
日本プロテオーム学会2023年大会, 2023年7月.
2. 谷澤 輝嗣, 稲垣 舞, 小迫 英尊, 安藤 英紀, 石田 竜弘, 立川 正憲 :
抗ヒト脳微小血管内皮細胞抗体の標的受容体の探索,
日本薬学会第143年会, 2023年3月.
3. 小迫 英尊 :
近接ビオチン標識法などの先端プロテオミクス技術による細胞内タンパク質間相互作用の解析,
第24回ExCELLSセミナー, 2022年11月.
4. 小迫 英尊 :
近接依存性ビオチン標識におけるTamavidin 2-REVの活用とSTINGシグナルへの応用,
第95回日本生化学会大会, 2022年11月.
5. Kou Motani, Noriko Saito-Tarashima, K Nishino, Shunya Yamauchi, Noriaki Minakawa and Hidetaka Kosako :
ACBD3 forms specialized ER-Golgi contact sites to drive the ER exit of STING.,
The 17th International Symposium of the Institute Network, Kanazawa, Oct. 2022.
6. Tetsuro Yoshimaru, Yosuke Matsushita, Hidetaka Kosako, Sasa Mitsunorii, Miyoshi Yasuo and Toyomasa Katagiri :
The plasma membrane BIG3-PHB2 complex contributes to the acquisition of trastuzumab-resistance in HER2-positive breast cancer,
The 17th International Symposium of the Institute Network for Biomedical Sciences International Symposium on Tumor Biology in Kanazawa 2022, Oct. 2022.
7. 𠮷川 治孝, 小迫 英尊 :
Protein Correlation Profilingによる細胞内巨大タンパク質複合体の解析,
日本プロテオーム学会2022年大会, 2022年8月.
8. 山内 駿弥, 田良島 典子, 茂谷 康, 小迫 英尊, 南川 典昭 :
膜透過性型cyclic dinucleotide analogの創製,
日本核酸医薬学会第7回年会, 2022年7月.
9. 小迫 英尊 :
先端プロテオーム解析技術を用いた生体内蛋白質間相互作用の大規模解析,
第22回日本蛋白質科学会年会, 2022年6月.
10. 山内 駿弥, 田良島 典子, 茂谷 康, 小迫 英尊, 南川 典昭 :
膜透過型STINGアゴニストとしてのbis-pivSATE-2'-F-c-di-dAMPの創製,
日本薬学会第142年会, 2022年3月.
11. 小迫 英尊 :
近接依存性ビオチン標識(BioID)法による生体内タンパク質間相互作用の大規模解析,
基礎生物学研究所NIBB生物機能情報分析室テクニカルセミナー, 2022年3月.
12. 小迫 英尊 :
Global interactome analysis in living cells using advanced proteomic technologies,
第44日本分子生物学会年会, 2021年12月.
13. 小迫 英尊 :
先端プロテオミクス技術を用いた生体内タンパク質間相互作用の解析,
第7回生体調節研究所内分泌代謝シンポジウム, 2021年9月.
14. 小迫 英尊 :
シグナル伝達機構を明らかにするための様々なプロテオーム解析技術,
日本プロテオーム学会2021年大会, 2021年7月.
15. 橋田 芽依, 渡辺 朗, 小迫 英尊, 前田 康輔, 猪熊 翼, 山田 安希子, 篠原 康雄, 山本 武範 :
近接依存性標識法によるミトコンドリアCaユニポーターの新規制御因子の探索,
日本薬学会第141年会, 2021年3月.
16. 小迫 英尊 :
最先端プロテオミクス技術を用いた疾患に関与するシグナル伝達機構の解明,
第93回日本生化学会大会, 2020年9月.
17. 北風 圭介, 谷内 秀輔, 河野 恵理, 濱田 良真, 三宅 雅人, 親泊 美帆, 小島 宏建, 小迫 英尊, 栗原 ともこ, 吉田 優, 細谷 孝充, 親泊 政一 :
小胞体ストレス下のタンパク質凝集と細胞毒性を緩和する化学シャペロンの同定,
第93回日本薬理学会年会, 2020年3月.
18. 大東 いずみ, 小迫 英尊, 高浜 洋介 :
胸腺上皮細胞のオミクスプロファイリング,
第42回日本分子生物学会年会, 2019年12月.
19. 近藤 博之, 松村 貴史, 小迫 英尊, 伊川 正人, 高浜 洋介, 大東 いずみ :
新規プロテアソーム会合因子PITHD1は精子形成を制御する,
第42回日本分子生物学学会年会, 2019年12月.
20. 小迫 英尊 :
ERK/MAPキナーゼシグナルの応答特性の制御,
第69回日本電気泳動学会シンポジウム, 2019年10月.
21. 谷内 秀輔, 小迫 英尊, 三宅 雅人, 親泊 美帆, 親泊 政一 :
小胞体ストレスセンサーPERK による炎症性メディエーター調節機構,
第14回小胞体ストレス研究会, 2019年9月.
22. 小迫 英尊 :
シグナル伝達研究における高分解能質量分析計の活用,
第92回日本生化学会大会, 2019年9月.
23. 北風 圭介, 谷内 秀輔, 河野 恵理, 濱田 良真, 三宅 雅人, 親泊 美帆, 小島 宏達, 小迫 英尊, 栗原 ともこ, 吉田 優, 細谷 孝充, 親泊 政一 :
小胞体ストレス下のタンパク質凝集を標的とする新規化学シャペロンの同定,
第92回日本生化学会大会, 2019年9月.
24. 髙士 祐一, 小迫 英尊, 沢津橋 俊, Y Kinoshita, N Ito, 松久 宗英, M Matsumoto, 福本 誠二 :
FGF recepotor I works as a phosphate-sensor to regulate FGF23 production,
15th Bone Biology Forum, 2019年8月.
25. 小迫 英尊 :
先端プロテオーム解析法を用いた細胞内シグナル伝達機構の解明,
第8回生命科学阿波おどりシンポジウム, 2019年8月.
26. 北風 圭介, 谷内 秀輔, 河野 恵理, 濱田 良真, 三宅 雅人, 親泊 美帆, 小島 宏達, 小迫 英尊, 栗原 ともこ, 吉田 優, 細谷 孝充, 親泊 政一 :
プロテオパチーの治療薬創出を目指した新規化学シャペロンの探索,
第31回創薬・薬理フォーラム岡山, 2019年7月.
27. 小迫 英尊 :
Phos-tagと質量分析によるリン酸化シグナル伝達機構の解明,
日本プロテオーム学会2019年大会, 2019年7月.
28. 佐藤 美由紀, 佐藤 健, 小迫 英尊 :
線虫遺伝学×プロテオミクスのコラボ:父性オルガネラオートファジー制御機構の解明を目指して,
第19回日本蛋白質科学会年会・第71回日本細胞生物学会大会 合同年次大会, 2019年6月.
29. 北風 圭介, 谷内 秀輔, 河野 恵理, 濱田 良真, 三宅 雅人, 親泊 美帆, 小島 宏達, 小迫 英尊, 栗原 ともこ, 吉田 優, 細谷 孝充, 親泊 政一 :
小胞体におけるタンパク質凝集と細胞毒性を軽減する新規化学シャペロンの同定,
第60回日本生化学中国・四国支部例会, 2019年5月.
30. 髙士 祐一, 小迫 英尊, 沢津橋 俊, 木下 祐加, 伊東 伸朗, 安倍 正博, 松久 宗英, 加藤 茂明, 松本 俊夫, 福本 誠二 :
FGFR1はFGF23濃度調節を媒介するリン感知受容体である,
第92回日本内分泌学会学術総会, Vol.95, No.1, 333, 2019年5月.
31. 茂谷 康, 梶本 真弓美, 小迫 英尊 :
BioID法によるビオチン化部位の大規模スクリーニングで明らかとなったSTINGタンパク質の相互作用因子,
第41回日本分子生物学会, 2018年11月.
32. 近藤 博之, 松村 貴史, 小迫 英尊, 伊川 正人, 高浜 洋介, 大東 いずみ :
プロテアソームに会合する新規分子PITHD1の機能解析,
第41回日本分子生物学会年会, 2018年11月.
33. 谷内 秀輔, 小迫 英尊, 三宅 雅人, 親泊 美帆, 親泊 政一 :
HMGB1とHMGB2はPERKの新規リン酸化基質である,
第13回小胞体ストレス研究会, 2018年11月.
34. 北風 圭介, 谷内 秀輔, 河野 恵理, 濱田 良真, 三宅 雅人, 親泊 美帆, 小島 宏達, 小迫 英尊, 栗原 ともこ, 吉田 優, 細谷 孝充, 親泊 政一 :
細胞ベースのハイスループットスクリーニングによる新規化学シャペロンの同定,
第13回小胞体ストレス研究会, 2018年11月.
35. 小迫 英尊 :
シグナル伝達研究における蛍光ウェスタンの活用,
第91回日本生化学会, 2018年9月.
36. 小迫 英尊 :
先端プロテオミクス技術によるSTING/TBK1シグナル経路の解析,
第2回質量分析インフォマティクス・ハッカソン・シンポジウム, 2018年7月.
37. 小迫 英尊 :
様々なリン酸化プロテオミクス技術を用いたタンパク質キナーゼの標的基質の大規模同定と機能解析,
日本質量分析学会・日本プロテオーム学会2018年合同大会, 2018年5月.
38. 小迫 英尊 :
疾患に関与する細胞内情報伝達機構を解明するためのリン酸化プロテオミクス技術,
日本質量分析学会・日本プロテオーム学会2018年合同大会, 2018年5月.
39. 小迫 英尊 :
質量分析装置を用いた細胞内情報伝達機構の解析,
株式会社 東レリサーチセンター 特別講座【今から学んでも遅くない プロテオミクスと質量分析の基礎】, 2018年1月.
40. 茂谷 康, 梶本 真弓美, 小迫 英尊 :
TBK1による ATG8ファミリー分子 GABARAPL2のリン酸化の機能解析,
2017年度 生命科学系学会合同年次大会, 2017年12月.
41. 小迫 英尊 :
Phos-tag などのリン酸化プロテオミクス技術による疾患原因キナーゼの機能解析,
第68回日本電気泳動学会総会, 2017年11月.
42. 小迫 英尊 :
リン酸化プロテオミクスによる疾患原因キナーゼの機能解析,
第286回 発生研セミナー, 2016年11月.
43. 小迫 英尊 :
リン酸化プロテオミクス技術による疾患関連キナーゼの機能解析,
神戸大学医学研究科 シグナル伝達医学講演会, 2016年8月.
44. 茂谷 康, 竹本 龍也, 梶本 真弓美, 小迫 英尊 :
細胞内自己DNAによるcGAMP/STING経路依存的・非依存的なサイトカイン誘導,
BMB2015, 2015年12月.
45. 小迫 英尊 :
Phos-tagなどのリン酸化プロテオミクス技術の結集によるキナーゼ基質の同定と機能解析,
BMB2015, 2015年12月.
46. 小迫 英尊 :
先端プロテオミクス技術によるタンパク質キナーゼ基質の同定と機能解析,
第15回日本蛋白質科学会年会, 2015年6月.
47. 小迫 英尊 :
リン酸化プロテオミクスを用いた疾患原因キナーゼの作用機構の解明,
第6回 脳科学クラスター・ミニリトリート, 2015年1月.
48. 小迫 英尊 :
リン酸化プロテオミクスによる核-細胞質間分子輸送およびPINK1/Parkin経路の解析,
第244回 発生研セミナー, 2015年1月.
49. 小迫 英尊 :
リン酸化プロテオミクスを用いたキナーゼ基質の機能解析,
第681回 生医研セミナー, 2014年9月.
50. 小迫 英尊 :
リン酸化プロテオミクスを用いた細胞内情報伝達の解明 : 統合的医科学研究に向けて,
第57回プロテオーム医療創薬研究会, 2014年8月.
51. 小迫 英尊 :
リン酸化プロテオミクスによるキナーゼ基質の同定と機能解析,
日本プロテオーム学会2014年会, 2014年7月.
52. 小迫 英尊 :
MAPキナーゼによるFGヌクレオポリンの多重リン酸化は核─細胞質間輸送を制御する,
第36回日本分子生物学会年会, 2013年12月.
53. 小迫 英尊 :
リン酸化プロテオミクスを用いたキナーゼターゲットの同定と機能解析,
第2回JHUPOサテライトシンポジウム, 2013年6月.
54. 小迫 英尊 :
蛍光標識二次元ディファレンスゲル電気泳動2D-DIGEから得られた知見と展望,
第63回日本電気泳動学会総会, 2012年8月.
55. 小迫 英尊 :
Phosphorylation of FG nucleoporins by MAP kinases is involved in the regulation of nuclear transport,
第34回日本分子生物学会年会, 2011年12月.
56. 小迫 英尊 :
プロテオミクスで明らかになったMAPキナーゼによる核膜孔タンパク質群のリン酸化制御,
平成23年度生化学会関東支部例会, 2011年6月.
57. 小迫 英尊 :
新たなリン酸化プロテオミクスによる細胞内キナーゼ基質の大規模同定とその機能制御機構の解明,
臨床研セミナー, 2010年11月.
58. 小迫 英尊 :
siRNAを用いたリン酸化シグナル伝達研究,
サーモサイエンティフィック ライフサイエンスセミナー, 2010年7月.
59. 小迫 英尊 :
リン酸化プロテオミクスで明らかとなったERK MAPキナーゼによる核膜孔複合体の機能制御,
理研セミナー, 2010年3月.
60. 小迫 英尊 :
リン酸化プロテオミクスで明らかとなった MAPキナーゼによる核膜孔複合体の機能制御,
九州大学薬学研 究院招待セミナー, 2010年2月.
61. 小迫 英尊 :
リン酸化プロテオミクスで明らかとなった ERK/MAPキナーゼによる核膜孔複合体の機能制御,
京都大学大 学院医学研究科学術講演会, 2010年1月.
62. 小迫 英尊 :
リン酸化プロテオミクスによって明ら かとなったERK/MAPキナーゼによる核膜孔複合体の機能制御,
熊本大学大学院自然科学研究科プロジェクトゼミナール, 2009年12月.
63. 小迫 英尊 :
リン酸化プロテオミクスで明らかとなったERK/MAPキナーゼによる核膜孔複合体の制御,
富山大学大学院医学薬学研究部特別セミナー, 2009年11月.
64. 小迫 英尊, 荒波 千鶴, 山口 希実, 鈴木 仁美, 小瀬 真吾, 今本 尚子, 谷口 寿章, 西田 栄介, 服部 成介 :
リン酸化プロテオミクスによって明らかとなったERK/MAPキナーゼによる核膜孔複合体の機能制御,
第82回日本生化学会大会, 2009年10月.
65. 小迫 英尊 :
ERK/MAPキナーゼによる核膜孔複合体のリン酸化制御,
大阪大学蛋白質研究所セミナー, 2008年7月.
66. 小迫 英尊 :
新たなリン酸化プロテオミクスによるMAPキナーゼ基質の網羅的同定と機能解析,
基生研研究会, 2008年4月.
67. 小迫 英尊, 韓 美英, 山口 希実, 牛山 正人, 西田 栄介, 服部 成介 :
新たなリン酸化プロテオミクスによる細胞内キナーゼ基質の網羅的同定:ERK/MAPキナーゼによるアクチン架橋タンパク質EPLINのリン酸化を介した細胞運動制御,
BMB2007, 2007年10月.
68. 小迫 英尊, 山口 希実, 牛山 正人, 田中 政道, 平野 穣, 西田 栄介, 服部 成介 :
2D-DIGE技術を用いた新たなリン酸化プロテオミクスによるERK MAPキナーゼ経路の標的因子の網羅的解析,
第28回日本分子生物学会年会, 2005年12月.
69. 小迫 英尊 :
2D DIGE技術を利用した新たなリン酸化プロテオミクスによるMAPキナーゼ経路の標的因子の網羅的解析,
名古屋大学生命理学専攻セミナー, 2005年7月.

その他・研究会:

1. 小迫 英尊 :
改良型BioID法を用いた自然免疫分子STINGのインタラクトーム解析,
新学術領域研究「数理シグナル」第3回若手ワークショップ, 2019年9月.
2. 小迫 英尊 :
先端プロテオミクス技術による細胞内シグナル伝達機構の解明,
内分泌・代謝学共同利用・共同研究拠点セミナー, 2019年8月.

科学研究費補助金 (KAKEN Grants Database @ NII.ac.jp)

  • 包括的疾患インタラクトームとモデルマウスによる自己炎症疾患の多様性と周期性の解明 (研究課題/領域番号: 23H02944 )
  • 先端プロテオミクス技術の開発による自然免疫シグナルの新規制御機構の解明 (研究課題/領域番号: 23H02478 )
  • 翻訳後修飾による細胞内非膜型オルガネラの構造・機能制御機構の解明 (研究課題/領域番号: 23H00369 )
  • 肉腫におけるトラベクテジンの奏効性と融合遺伝子の相関の分子背景を調べる研究 (研究課題/領域番号: 22K07036 )
  • 免疫シナプスの時空間ダイナミクス解析による免疫補助受容体の機能解明 (研究課題/領域番号: 22H00448 )
  • プロテオゲノミクス解析と患者由来モデルを用いた腹膜偽粘液腫の新しい治療法の開発 (研究課題/領域番号: 21K08743 )
  • PINK1-Parkin経路の網羅的プロテオーム解析とミトコンドリア制御の解明 (研究課題/領域番号: 20K06628 )
  • アリルハイドロカーボン受容体シグナルによる肺動脈性肺高血圧症の病態形成機構 (研究課題/領域番号: 20H03682 )
  • 筋線維芽細胞に特異的に発現する線維化促進分子の機能解析とその創薬応用への基盤構築 (研究課題/領域番号: 20H03383 )
  • 自然免疫分子STINGを介したシグナル伝達経路の重層的プロテオーム解析 (研究課題/領域番号: 19H04966 )
  • 生理活性脂質による自然免疫機構を介した炎症応答の制御機序解明 (研究課題/領域番号: 18KK0229 )
  • パーキンソン病原因遺伝子産物PINK1が形成するシグナル系の最先端プロテオミクス (研究課題/領域番号: 17K08635 )
  • 多層リン酸化プロテオミクスによる疾患原因キナーゼの標的基質の同定と生理機能の解明 (研究課題/領域番号: 26440101 )
  • 胸腺細胞の選択と選択後分化の分子基盤の解明 (研究課題/領域番号: 26293108 )
  • プロテオミクスを用いたFGヌクレオポリンのリン酸化による核膜孔制御の解明 (研究課題/領域番号: 24113717 )
  • 乳癌進展における微小環境シグナリングのリン酸化プロテオミクス解析と組織での可視化 (研究課題/領域番号: 24390087 )
  • 新規に同定したERK基質群のリン酸化による制御メカニズムの包括的解明 (研究課題/領域番号: 23570231 )
  • シグナル伝達キナーゼによるリン酸化を介したFGヌクレオポリンの機能制御機構の解明 (研究課題/領域番号: 22113514 )
  • 標的化プロテオミクスによるタンパク質巨大複合体の翻訳後修飾の網羅的解析 (研究課題/領域番号: 22370042 )
  • 新たなリン酸化プロテオミクスによる細胞内キナーゼ基質の網羅的同定と機能解析 (研究課題/領域番号: 20570177 )
  • イレッサ感受性診断プロテインチップの創製 (研究課題/領域番号: 19659080 )
  • プロテオミクスによるEGF受容体下流シグナルの探索 (研究課題/領域番号: 19370041 )
  • 新たなリン酸化プロテオミクスによるMAPキナーゼ経路の標的因子の網羅的解析 (研究課題/領域番号: 18770166 )
  • リン酸化プロテオーム解析による腫瘍特異的転写制御機構の解明 (研究課題/領域番号: 18013013 )
  • リン酸化プロテオーム解析による腫瘍特異的転写制御機構の解明 (研究課題/領域番号: 17014022 )
  • リン酸化プロテオーム解析によるERK及びROCKの基質の網羅的同定と機能解析 (研究課題/領域番号: 16770141 )
  • リン酸化プロテオームによるインスリン/Akt経路の標的因子の網羅的解析法の開発 (研究課題/領域番号: 16012211 )
  • 多能性神経幹細胞の増殖と分化の分子機構の解明 (研究課題/領域番号: 13480254 )
  • Rho/Rho-キナーゼ経路による中間径フィラメント構築の制御機構の解明 (研究課題/領域番号: 11780526 )
  • 抗リン酸化抗体の利用による、細胞質分裂期に分裂溝近傍で活性化するキナーゼの同定 (研究課題/領域番号: 09780589 )
  • 研究者番号(10291171)による検索