Search:
Tokushima UniversityGraduate School of Technology, Industrial and Social SciencesDivision of Science and TechnologyComputer ScienceInformation Science
Tokushima UniversityFaculty of Science and TechnologyDepartment of Science and Technology知能情報コースInformation Science
Tokushima UniversityGraduate School of Advanced Technology and ScienceSystems Innovation EngineeringInformation Science and Intelligent SystemsInformation Science
(Files for researchmap) [PDF manual] [Auto-propagate to researchmap]

Research

Field of Study

Subject of Study

Book / Paper

Academic Paper (Judged Full Paper):

1. Yuichi Nagata and Shinji Imahori :
Creation of Dihedral Escher-like Tilings Based on As-Rigid-As-Possible Deformation,
ACM Transactions on Graphics, Vol.43, No.2:18, 1-18, 2024.
(DOI: 10.1145/3638048,   Elsevier: Scopus)
2. Yuichi Nagata and Shinji Imahori :
Escherization with Large Deformations Based on As-Rigid-As-Possible Shape Modeling,
ACM Transactions on Graphics, Vol.41, No.2:11, 1-16, 2022.
(DOI: 10.1145/3487017)
3. Yuichi Nagata :
High-Order Entropy-based Population Diversity Measures in the Traveling Salesman Problem,
Evolutionary Computation, Vol.28, No.4, 595-619, 2020.
(DOI: 10.1162/evco_a_00268)
4. Yuichi Nagata and Shinji Imahori :
An Efficient Exhaustive Search Algorithm for the Escherization Problem,
Algorithmica, Vol.82, No.9, 2502-2534, 2020.
(DOI: 10.1007/s00453-020-00695-6,   Elsevier: Scopus)
5. Yuichi Nagata, Akinori Imamiya and Norihiko Ono :
A genetic algorithm for the picture maze generation problem, Computers & Operations research,
Computers & Operations Research, Vol.115, 313-323, 2020.
(Tokushima University Institutional Repository: 114970,   DOI: 10.1016/j.cor.2019.104860)
6. Nobuaki Oki, Norihiko Ono and Yuichi Nagata :
Modeling of a Vehicle Routing Problem with Actual Constraints and Re-scheduling for Dynamic Requests,
Transactions of the Society of Instrument and Control Engineers, Vol.55, No.4, 313-323, 2019.
(DOI: 10.9746/sicetr.55.313,   CiNii: 1390001288129671936)
7. Keiichiro Terao, Norihiko Ono and Yuichi Nagata :
Parallelization of GA-EAX using Identical Population in all Processes,
Transaction of the Japanese Society for Evolutionary Computation, Vol.8, No.3, 100-110, 2018.
(DOI: 10.11394/tjpnsec.8.100,   CiNii: 1390001205364382848)
8. Takuya Yamabuki, Norihiko Ono and Yuichi Nagata :
同卓スケジューリング問題のモデル化とその動的スケジューリング,
Transactions of the Society of Instrument and Control Engineers, Vol.54, No.3, 346-356, 2018.
(DOI: 10.9746/sicetr.54.346,   CiNii: 1390282679486408320)
9. Yuichi Nagata and Isao Ono :
A Guided Local Search with Iterative Ejections of Bottleneck Operations for the Job Shop Scheduling Problem,
Computers & Operations Research, Vol.90, 60-71, 2018.
(DOI: 10.1016/j.cor.2017.09.017,   Elsevier: Scopus)
10. Yuichi Nagata :
Random Partial Neighborhood Search for the Post-Enrollment Course Timetabling Problem,
Computers & Operations Research, Vol.90, 84-96, 2018.
(DOI: 10.1016/j.cor.2017.09.014,   Elsevier: Scopus)
11. 山越 幸太, Yuichi Nagata and 小野 功 :
TSPのためのGA-EAXにおける探索ステージ切換条件とマルチスタート戦略の提案,
Transactions of the Society of Instrument and Control Engineers, Vol.52, No.4, 242-248, 2016.
(DOI: 10.9746/sicetr.52.242,   CiNii: 1390282679485961088)
12. 益富 和之, Yuichi Nagata and 小野 功 :
A Novel Evolution Strategy for Noisy Function Optimization,
Transaction of the Japanese Society for Evolutionary Computation, Vol.6, No.1, 1-12, 2015.
(DOI: 10.11394/tjpnsec.6.1,   CiNii: 1390282680341421184)
13. 濱田 直希, Yuichi Nagata, 小林 重信 and Isao Ono :
BS-AWA: A More Scalable Adaptive Weighted Aggregation for Continuous Multiobjective Optimization,
Transaction of the Japanese Society for Evolutionary Computation, Vol.5, No.1, 1-15, 2014.
(DOI: 10.11394/tjpnsec.5.1,   CiNii: 1390282680342337152)
14. 福島 信純, Yuichi Nagata, 小林 重信 and Isao Ono :
Distance-weighted Exponential Natural Evolution Strategyの提案と性能評価,
Transaction of the Japanese Society for Evolutionary Computation, Vol.4, No.2, 57-73, 2013.
(DOI: 10.11394/tjpnsec.4.57)
15. Yuichi Nagata and Shigenobu Kobayashi :
A Powerful Genetic Algorithm using Edge Assembling Crossover for the Traveling Salesman Problem,
INFORMS Journal on Computing, Vol.25, No.2, 346-363, 2013.
(DOI: 10.1287/ijoc.1120.0506)
16. 濱田 直希, Yuichi Nagata, 小林 重信 and Isao Ono :
On the Stopping Criterion of Adaptive Weighted Aggregation for Multiobjective Continuous Optimization,
Transaction of the Japanese Society for Evolutionary Computation, Vol.4, No.1, 13-27, 2013.
(DOI: 10.11394/tjpnsec.4.13,   CiNii: 1390282680343138944)
17. Kazuyuki Masutomi, Yuichi Nagata and Isao Ono :
An Evolutionary Algorithm for Black-Box Chance-Constrained Function Optimization,
Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.17, No.2, 272-282, 2013.
(Elsevier: Scopus)
18. 上村 健人, 木下 峻一, Yuichi Nagata, 小林 重信 and Isao Ono :
Big-valley Explorer: A Framework of Real-coded Genetic Algorithms for Multi-funnel Function Optimization,
Transaction of the Japanese Society for Evolutionary Computation, Vol.4, No.1, 13-27, 2013.
(DOI: 10.11394/tjpnsec.4.1,   CiNii: 1390001205366429312)
19. Y. Akimoto, Yuichi Nagata, Isao Ono and S. Kobayashi :
Theoretical Foundation for CMA-ES from Information Geometry Perspective,
Algorithmica, Vol.64, No.4, 698-716, 2012.
(DOI: 10.1007/s00453-011-9564-8,   Elsevier: Scopus)
20. 濱田 直希, Yuichi Nagata, 小林 重信 and Isao Ono :
被覆度を考慮したマルチスタート法による多目的連続最適化,
Transaction of the Japanese Society for Evolutionary Computation, Vol.3, No.2, 31-46, 2012.
(DOI: 10.11394/tjpnsec.3.31)
21. Yuichi Nagata and David Soler :
A new genetic algorithm for the asymmetric traveling salesman problem,
Expert Systems with Applications, Vol.39, No.10, 8947-8953, 2012.
(DOI: 10.1016/j.eswa.2012.02.029)
22. 宮前 惇, Yuichi Nagata, Isao Ono and 小林 重信 :
多峰性景観下での直接政策探索:重点サンプリングを用いたPopulation-based Policy Gradient法,
Transaction of the Japanese Society for Evolutionary Computation, Vol.2, No.1, 1-11, 2011.
(DOI: 10.11394/tjpnsec.2.1)
23. A. Maki, Y. Akimoto, Yuichi Nagata, Nagata S. Kobayashi, E. Kobayashi, S. Shiotani, T. Ohsawa and N. Umeda :
A new weather-routing system that accounts for ship stability based on a real-coded genetic algorithm,
Journal of Marine Science and Technology, Vol.16, No.3, 311-322, 2011.
(DOI: 10.1007/s00773-011-0128-z)
24. O. Bräysy, E. Martinez, Yuichi Nagata and D. Soler :
The mixed capacitated general routing problem with turn penalties,
Expert Systems with Applications, Vol.38, No.10, 12954-12966, 2011.
(DOI: 10.1016/j.eswa.2011.04.092)
25. 藤井 宏行, Yuichi Nagata, Isao Ono and 小林 重信 :
光学的情報τを用いた移動ロボットの設計と評価,
Journal of the Robotics Society of Japan, Vol.28, No.10, 1189-1200, 2010.
(DOI: 10.7210/jrsj.28.1189)
26. Yuichi Nagata, O. Bräysy and W. Dullaert :
A Penalty-based Edge Assembly Memetic Algorithm for the Vehicle Routing Problem with Time Windows,
Computers & Operations Research, Vol.37, No.4, 724-737, 2010.
(DOI: 10.1016/j.cor.2009.06.022)
27. Yuichi Nagata, 小林 重信 and 東条 敏 :
Efficient Local Search Limitation Strategies in Memetic Algorithm,
Transactions of the Japanese Society for Artificial Intelligence, Vol.25, No.2, 299-310, 2010.
(DOI: 10.1527/tjsai.25.299,   CiNii: 1390001205109070848,   Elsevier: Scopus)
28. 大嶋 彈, 宮前 惇, Yuichi Nagata, 小林 重信, Isao Ono and 佐久間 淳 :
A New Real-coded Genetic Algorithm with an Adaptive Mating Selection for UV-landscapes,
Transactions of the Japanese Society for Artificial Intelligence, Vol.25, No.2, 290-298, 2010.
(DOI: 10.1527/tjsai.25.290,   CiNii: 1390282680085783680,   Elsevier: Scopus)
29. 秋本 洋平, Yuichi Nagata, 佐久間 淳, 小野 功 and 小林 重信 :
Analysis of The Behavior of MGG and JGG As A Selection Model for Real-coded Genetic Algorithms,
Transactions of the Japanese Society for Artificial Intelligence, Vol.25, No.2, 281-289, 2010.
(DOI: 10.1527/tjsai.25.281,   CiNii: 1390001205109072384,   Elsevier: Scopus)
30. Yuichi Nagata and Olli Bräysy :
Edge Assembly based Memetic Algorithm for the Capacitated Vehicle Routing Problem,
Networks, Vol.54, No.4, 205-215, 2009.
(DOI: 10.1002/net.20333,   Elsevier: Scopus)
31. 秋本 洋平, Yuichi Nagata, 佐久間 淳, 小野 功 and 小林 重信 :
Proposal and Evaluation of Adaptive Real-coded Crossover AREX,
Transactions of the Japanese Society for Artificial Intelligence, Vol.24, No.6, 446-458, 2009.
(DOI: 10.1527/tjsai.24.446,   CiNii: 1390001205108974592,   Elsevier: Scopus)
32. Yuichi Nagata and Olli Bräysy :
A Powerful Route Minimization heuristic for the Vehicle Routing Problem with Time Windows,
Operations Research Letters, Vol.37, No.5, 333-338, 2009.
(DOI: 10.1016/j.orl.2009.04.006,   Elsevier: Scopus)
33. Yuichi Nagata :
An Adaptive Niching Genetic Algorithm using a niche size equalization mechanism,
Transactions of the Japanese Society for Artificial Intelligence, Vol.24, No.1, 92-103, 2009.
(DOI: 10.1527/tjsai.24.92,   CiNii: 1390282680083022592,   Elsevier: Scopus)
34. Yuichi Nagata :
Fast Implementation of Genetic Algorithm by Localized EAX Crossover for the Traveling Salesman Problem,
Transactions of the Japanese Society for Artificial Intelligence, Vol.22, No.5, 524-552, 2007.
(DOI: 10.1527/tjsai.22.542,   CiNii: 1390001205108326656)
35. Yuichi Nagata :
New Approach of a Genetic Algorithm for TSP Using the Evaluation Function Considering Local Diversity Loss,
Transactions of the Japanese Society for Artificial Intelligence, Vol.21, No.2, 195-204, 2006.
(DOI: 10.1527/tjsai.21.195,   CiNii: 1390282680083497216,   Elsevier: Scopus)
36. Yuichi Nagata and 小林 重信 :
巡回セールスマン問題に対する交叉:枝組み立て交叉の提案と評価,
Journal of Japanese Society for Artificial Intelligence, Vol.14, No.5, 848-859, 1999.

Academic Paper (Unrefereed Paper):

1. Yang Yifei, Zhang Chaofeng, Wang Wenbin, Haichuan YANG and Yuichi Nagata :
A classification and improvement method of metaheuristic algorithms based on complex networks,
Bulletin of Advanced Institute of Industrial Technology, No.17, 94-99, 2024.

Review, Commentary:

1. Yuichi Nagata :
多点探索アルゴリズムの基礎と最前線,
オペレーションズ・リサーチ, Vol.58, No.12, 708-715, Dec. 2013.

Proceeding of International Conference:

1. Haichuan YANG, Yang Yifei, Zhang Yuxin, Tang Cheng, Hashimoto Koichi and Yuichi Nagata :
Chaotic Map-Coded Evolutionary Algorithms for Dendritic Neuron Model Optimization,
2024 IEEE Congress on Evolutionary Computation (CEC), 1-8, Aug. 2024.
(DOI: 10.1109/CEC60901.2024.10612087)
2. Yuichi Nagata :
Research on automatic generation of artistic paintings called Escher tiling,
The 9th international forum on Advanced Technologies (IFAT 2023), Mar. 2023.
3. Yuichi Nagata :
Escherization with a Distance Function Focusing on the Similarity of Local Structure,
Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN 2018), LNCS 11101, 108-120, Sep. 2018.
(DOI: 10.1007/978-3-319-99253-2_9,   Elsevier: Scopus)
4. Yuichi Nagata :
Population Diversity Measures Based on Variable-Order Markov Models for the Traveling Salesman Problem,
Proceedings of the 14th International Conference on Parallel Problem Solving from Nature (PPSN 2016), 973-983, Sep. 2016.
(DOI: 10.1007/978-3-319-45823-6_91,   Elsevier: Scopus)
5. Yuichi Nagata and Isao Ono :
Random Partial Neighborhood Search for University Course Timetabling Problem,
Proceedings of the 13th International Conference on Parallel Problem Solving from Nature, 782-791, Sep. 2014.
6. T. Sasaki, Yuichi Nagata and Isao Ono :
Improving Estimation Accuracy of Particle Filter by Efficient Interpolation Based on Crossover,
Proceedings of the SICE Annual Conference 2014, 1216-1221, Sep. 2014.
7. Yuichi Nagata and Isao Ono :
High-Order Sequence Entropies for Measuring Population Diversity in the Traveling Salesman Problem,
Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013), LNCS 7832, 179-190, Sep. 2013.
8. Yuichi Nagata and Isao Ono :
An Enhancement of Edge Assembly Crossover for the Capacitated Vehicle Routing Problem,
Proceedings of the 10th Metaheuristics International Conference (MIC 2013), 243-245, Aug. 2013.
9. Kazuma Honda, Yuichi Nagata and Isao Ono :
A Parallel Genetic Algorithm with Edge Assembly Crossover for 100,000-City Scale TSPs,
Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), 1278-1285, Jun. 2013.
10. Kazuyuki Masutomi, Yuichi Nagata and Isao Ono :
Extending Distance-weighted Exponential Natural Evolution Strategy for Function Optimization in Uncertain Environments,
Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), 2122-2129, Jun. 2013.
11. Kazuyuki Masutomi, Yuichi Nagata and Isao Ono :
Extending Distance-weighted Exponential Natural Evolution Strategy for Function Optimization in Uncertain Environments,
Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), 2122-2129, Jun. 2013.
12. Kento Uemura, Naotoshi Nakashima, Yuichi Nagata and Isao Ono :
A New Real-coded Genetic Algorithm for Implicit Constrained Black-box Function Optimization,
Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), 2887-2894, Jun. 2013.
13. Ryo Miyazaki, Naoki Hamada, Yuichi Nagata and Isao Ono :
A New Pareto Frontier Covering Strategy in FS-MOGA for Multi-Objective Function Optimization,
Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, 1-6, Nov. 2012.
14. Kazuma Masutomi, Yuichi Nagata and Isao Ono :
An Evolutionary Algorithm for Chance-Constrained Function Optimization with Implicit Constraints,
Proceedings of the International Symposium on Soft Computing sponsored by ASPIRE LEAGUE, 1-6, 2012.
15. Yuichi Nagata, Isao Ono and Shigenobu Kobayashi :
Memetic Algorithm using Selective Route Exchange Crossover for the Capacitated Vehicle Routing Problem,
Proceedings of the 9th Metaheuristics International Conference (MIC 2011), 329-338, Jul. 2011.
16. Kento Uemura, Shunichi Kinoshita, Yuichi Nagata, Shigenobu Kobayashi and Isao Ono :
A New Framework taking account of Multi-funnel Functions for Real-coded Genetic Algorithms,
Proceedings of the 2011 Congress on Evolutionary Computation (CEC 2011), 2091-2098, Jun. 2011.
17. Nobusumi Fukushima, Yuichi Nagata, Shigenobu Kobayashi and Isao Ono :
Proposal of Distance-weighted Exponential Natural Evolution Strategies,
Proceedings of the 2011 Congress on Evolutionary Computation (CEC 2011), 164-171, Jun. 2011.

Proceeding of Domestic Conference:

1. HOSOKAWA Takeru and Yuichi Nagata :
格闘ゲームAIにおける深層強化学習を用いた段階的行動選択,
進化計算シンポジウム2023, Dec. 2023.
2. HIRAOKA Naohiro and Yuichi Nagata :
時間枠付きPickup and Delivery問題に対する車両数削減ヒューリスティクスの性能評価,
進化計算シンポジウム2023, Dec. 2023.
3. NAGAMI Kazumasa and Yuichi Nagata :
仮想点を用いたエッシャータイリング問題の改善手法,
令和5年度 SICE 四国支部学術講演会, Dec. 2023.
4. Yuichi Nagata :
巡回セールスマン問題に対する最強遺伝的アルゴリズムの設計思想,
日本オペレーションズ・リサーチ学会 春季研究発表会&シンポジウム, Mar. 2023.
5. Hirotsuna Kutsuki and Yuichi Nagata :
深層強化学習を用いたシューティングゲーム AI の開発及び改善手法,
進化計算シンポジウム 2022, Dec. 2022.
6. Takanori Homma and Yuichi Nagata :
Sim-to-Real 学習に向けた強化学習による四足ロボットの歩行動作獲得の実験と考察,
進化計算シンポジウム 2022, Dec. 2022.
7. 西久保 雅人 and Yuichi Nagata :
多変量混合正規分布を用いたCMA-ESの提案とその性能評価,
第21回進化計算学会研究会, Mar. 2022.
8. 84. 岡田 直也 and Yuichi Nagata :
AlphaZeroを用いた自己対戦による七並べゲームプレイヤの作成,
第21回進化計算学会研究会, Mar. 2022.
9. 83. 亘 海都 and Yuichi Nagata :
層学習エージェントを用いた自己対戦によるコンピュータ大貧民の学習,
進化計算シンポジウム 2021, Dec. 2021.
10. 82. 居村 亮治 and Yuichi Nagata :
バネモデルを用いた目標図形の自然な変形による エッシャータイリングの生成法,
ICE四国支部学術講演会, Dec. 2021.
11. 81. 米田 和弘 and Yuichi Nagata :
深層強化学習を用いたロボット制御法の内発的報酬による学習改善,
ICE四国支部学術講演会, Dec. 2021.
12. 松本 稔 and Yuichi Nagata :
GAによる強い宝くじ仮説に基づいたNNの枝刈りに関する実験的考察,
電気学会C部門大会2021, Sep. 2021.
13. Yuichi Nagata :
--,
電気学会システム研究会, Jun. 2021.
14. Yuichi Nagata :
遺伝的アルゴリズムによる絵画的迷路作成迷路の作成,
電気学会システム研究会, Mar. 2020.
15. Yuta Yamami, Yuichi Nagata and Norihiko Ono :
個別的な突然変異による進化型深層強化学習,
2019年度計測自動制御学会関西支部・システム制御情報学会シンポジウム, Jan. 2020.
16. Minoru Matsumoto, Yuichi Nagata and Norihiko Ono :
ガウスベルヌーイ制限付きボルツマンマシンのエネルギー関数による最適化に関する考察,
2019年度計測自動制御学会関西支部・システム制御情報学会シンポジウム, Jan. 2020.
17. Takumi Ishikawa, Yuichi Nagata and Norihiko Ono :
On Optimization of Recurrent Neural Network Topologies along with Weights using CMA-ES,
第46回知能システムシンポジウム資料, Mar. 2019.
18. Naruki Kawagishi, Naoya Okada, Yuichi Nagata and Norihiko Ono :
Extraction of effective game record and learning of high quality simulation policy based on self-play by Monte Carlo Daihinmin players,
第46回知能システムシンポジウム資料, Mar. 2019.
19. Masatoshi Abe, Yuichi Nagata and Norihiko Ono :
A High Quality Training Data Generation Method for Effective Learning of Simulation Policy Focusing on the Best Hand on Game Tree,
第31回自律分散システム・シンポジウム資料, Jan. 2019.
20. Ryota Shimomura, Yuichi Nagata and Norihiko Ono :
Learning of Effective Strategies for One-on-one Battle Games by Co-evolutionary CMA-ES,
第31回自律分散システム・シンポジウム資料, Jan. 2019.
21. Yuichi Nagata, 今宮 明則 and Norihiko Ono :
絵画的迷路生成問題に対する遺伝的アルゴリズムの開発と最長経路問題への適用,
2018進化計算シンポジウム, Dec. 2018.
22. Masateru Shimodaira, Yuichi Nagata and Norihiko Ono :
A Topology and Weight Evolving Artificial Neural Network ANS-TWEANN and Its Application to the Pursuit Problem,
平成29年度 計測自動制御学会関西支部・システム制御情報学会 若手研究発表会, Jan. 2018.
23. Toshihide Haga, Yuichi Nagata and Norihiko Ono :
Acquisition of Simulation Policy by Bonanza Method and Its Application to Monte Carlo Daihinmin,
平成29年度 計測自動制御学会関西支部・システム制御情報学会 若手研究発表会, Jan. 2018.
24. Kenichi Tomita, Yuichi Nagata and Norihiko Ono :
Acquisition of Effective Strategies for One-on-one Competitive Games by Co-evolutionary Niching Generation Alternation Models,
平成29年度 計測自動制御学会関西支部・システム制御情報学会 若手研究発表会, Jan. 2018.
25. Takuya Yokoi, Shimomura Ryota, Yuichi Nagata and Norihiko Ono :
On niching genetic algorithms aimed at the evolution of neural network agents,
平成29年度 計測自動制御学会関西支部・システム制御情報学会 若手研究発表会, Jan. 2018.
26. Yudai Oda, Norihiko Ono and Yuichi Nagata :
車両配送問題における追加注文を考慮した配送計画システムの提案,
第12回コンピューテーショナル・インテリジェンス研究会, Dec. 2017.
27. Akinori Imamiya, Norihiko Ono and Yuichi Nagata :
MAを用いた絵画的迷路の自動生成,
第12回コンピューテーショナル・インテリジェンス研究会, Dec. 2017.
28. Yuichi Nagata :
一般化距離尺度を用いたエッシャー風タイリング問題の網羅的解法,
計算学会進化計算シンポジウム2017, Dec. 2017.
29. 山吹 卓也, Norihiko Ono and Yuichi Nagata :
同卓スケジューリング問題のモデル化とメタ戦略を用いた近似解法の開発,
第29回自律分散システム・シンポジウム, Jan. 2017.
30. 田浦 拓, Norihiko Ono and Yuichi Nagata :
進化計算を用いた非球面カメラレンズ設計,
第29回自律分散システム・シンポジウム, Jan. 2017.
31. Yuichi Nagata :
可変長マルコフモデルに基づく巡回セールスマン問題に対する GA の多様性指標の提案,
進化計算学会 進化計算シンポジウム2016, Dec. 2016.
32. 寺尾 圭一郎, Norihiko Ono and Yuichi Nagata :
差分データを用いた巡回セールスマン問題のための GA-EAX の効率的並列化,
進化計算学会 進化計算シンポジウム2016, Dec. 2016.
33. 西村 悠哉, Norihiko Ono and Yuichi Nagata :
解構造のシームレスな変異と集団の多様性維持に基づくリカレントニューラルネットの進化的設計,
進化計算学会 進化計算シンポジウム2016, Dec. 2016.
34. 今宮 明則, Norihiko Ono and Yuichi Nagata :
GA を用いた絵画的迷路の自動生成,
進化計算学会 進化計算シンポジウム2016, Dec. 2016.
35. 沖 展彰, Norihiko Ono and Yuichi Nagata :
実問題制約付き車両配送問題に対する配送計画システムの提案,
進化計算学会 進化計算シンポジウム2016, Dec. 2016.
36. Makoto Saitoh, Norihiko Ono and Yuichi Nagata :
A Niching GA for Optimization Problems with Deceptive Structure,
計測自動制御学会 システム・情報部門 学術講演会 2016, Dec. 2016.
37. 寺尾 圭一郎, Norihiko Ono and Yuichi Nagata :
大規模巡回セールスマン問題に対する交叉EAXを用いた遺伝的アルゴリズムの並列化,
計測自動制御学会 システム・情報部門学術講演会2015, Nov. 2015.
38. Yuichi Nagata :
高次の依存関係を考慮したエントロピー指標による遺伝的アルゴリズムの多様性維持,
計測自動制御学会 システム・情報部門学術講演会2015, Nov. 2015.
39. Kohsuke Nishino, Norihiko Ono and Yuichi Nagata :
An Framework for PORTS-based Strongly Typed Genetic Programming,
計測自動制御学会 第42回知能システムシンポジウム資料, Mar. 2015.
40. Toshihito Horita, Yuya Nishimura, Norihiko Ono and Yuichi Nagata :
Evolutionary Design of Recurrent Neural Network Topologies Along with Weights Based on Seamless Topology Mutations and An Adaptive Niching Generation Alternation Model,
計測自動制御学会 第42回知能システムシンポジウム資料, Mar. 2015.
41. 上村 健人, Yuichi Nagata and Isao Ono :
非明示アクティブ制約と稜構造を考慮した実数値 GA の提案,
進化計算学会 進化計算シンポジウム2014, Dec. 2014.
42. Yuichi Nagata :
部分ランダム近傍を用いた大学時間割作成問題の解法,
進化計算学会 進化計算シンポジウム2014, Dec. 2014.
43. 山越 幸太, Yuichi Nagata and Isao Ono :
TSP のためのGA-EAX における探索ステージ切換条件に関する一検討,
計測自動制御学会 システム・情報部門学術講演会2014, Nov. 2014.
44. Yuichi Nagata :
Memetic Algorithmを用いたVehicle Routing Problemの効率的近似解法,
第11回OR学会中部支部シンポジウム, Sep. 2014.
45. Yuichi Nagata :
多点探索の最前線,
日本オペレーションズ・リサーチ学会 2014年秋季シンポジウム, Aug. 2014.

Grants-in-Aid for Scientific Research (KAKEN Grants Database @ NII.ac.jp)

  • 計算に基づくエッシャータイリングの深化 (Project/Area Number: 24K14842 )
  • プロクラステス距離の一般化を軸としたエッシャータイリング自動生成法の深化 (Project/Area Number: 20K11695 )
  • Constraint oriented metaheuristics system for the vehicle routing problem (Project/Area Number: 17K00342 )
  • Automatic construction of mataheuristic algorithms for various vehicle routing problems (Project/Area Number: 25330284 )
  • The development of iterative constraint satisfaction problem solving methods for combinational optimization problems (Project/Area Number: 22700231 )
  • Genetic algorithm for very large traveling salesman problems and its applications to practical applications (Project/Area Number: 19700134 )
  • 遺伝的アルゴリズムを用いた近似最適化手法の一般的設計指針と応用のための基礎的研究 (Project/Area Number: 14780266 )
  • Search by Researcher Number (70334795)