Tomohiko Maruo, Kiyohito Mizutani, Muneaki Miyata, Toshihiko Kuriu, Shotaro Sakakibara, Hatena Takahashi, Daichi Kida, Kouki Maesaka, Tsukiko Sugaya, Ayuko Sakane, Takuya Sasaki, Yoshimi Takai and Kenji Mandai : s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons., The Journal of Biological Chemistry, Vol.299, No.4, 2023.
(要約)
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Shotaro Sakakibara, Kiyohito Mizutani, Ayumu Sugiura, Ayuko Sakane, Takuya Sasaki, Shigenobu Yonemura and Yoshimi Takai : Afadin regulates actomyosin organization through αE-catenin at adherens junctions., The Journal of Cell Biology, Vol.219, No.5, 2020.
(要約)
Actomyosin-undercoated adherens junctions are critical for epithelial cell integrity and remodeling. Actomyosin associates with adherens junctions through αE-catenin complexed with β-catenin and E-cadherin in vivo; however, in vitro biochemical studies in solution showed that αE-catenin complexed with β-catenin binds to F-actin less efficiently than αE-catenin that is not complexed with β-catenin. Although a "catch-bond model" partly explains this inconsistency, the mechanism for this inconsistency between the in vivo and in vitro results remains elusive. We herein demonstrate that afadin binds to αE-catenin complexed with β-catenin and enhances its F-actin-binding activity in a novel mechanism, eventually inducing the proper actomyosin organization through αE-catenin complexed with β-catenin and E-cadherin at adherens junctions.